Automating Theorem Proving

Saketh Kasibatla; CSE 230; June 5, 2025

Software 1s pretty neat!

THE FUTURE'S
PRETTY COOL!

...but 1t has problems

&

aﬁ CrowdStrike blames global I'T outage on bug in
checking updates

Historic crash renews focus on lack of accountability for software companies vital for commerce worldwide.

TLHAUCUUUUIN UuLus\.. yviigtu vvoeIiiu VV.I.U.I.].S (G B AW oy

why did it take so long to fix after social

&

In this 2022 update report we estimate that the cost of poor software quality in the US has grown to at
least $2.41 trillion?, but not in similar proportions as seen in 2020. The accumulated software Technical

&

vont down?

O PBS NEWS HOUR

HOW | falllty SOftwaI'e unab%le:lto alllccess.Fellcebccl).ok, Instagram
update sparked tech S
disruptions worldwide

Debt (TD) has grown to ~$1.52 trillion?.

Verification and ITPs can help!

PROOFS

... but they’re a lot of work

CompCert
8
o< 6
324
@, 3 5
0
Code Proofs

Xavier Leroy. Formal certification of a compiler back-end or: Programming a compiler with a proof assistant.

let’s use automation to reduce work!

program + spec — proof

Let’s verify a program!

Definition swap (m n : nat) : decorated :=
<{
[{X=m/\NY=n1} ->>
{ X+Y) - (X+Y) -Y¥Y)=n/\NX+Y)-Y=m}}

X =X +Y
({ X - X-Y)=n/\X-Y=m }};
Y (=X -Y
({ X -Y=n/\NY=m }};
X =X -Y
{({ X=n/\NY=m1}}
1>.

Theorem swap_valid : forall m n, outer_triple_valid (swap m n).
Proof.

Let’s verify a program!

“T““”S“pm”=””>=“wmmd‘ Theorem swap_valid : forall m n, outer_triple_valid (swap m n).
[{X=m/\Y=n 1} ->> Proof.
{{ X+Y) - (X+Y) -Y)=n/\NX+Y)-Y=m}} i
X = X + Y 1Ntros m n.
S s unfold outer_triple_valid. simpl.
{{X-Y=n/\Y=nm}} eapply hoare_seq.
X =X -Y
HXen/AY=ni - eapply hoare_seq.
s + apply hoare_asgn.

+ apply hoare_asgn.
- eapply hoare_consequence_pre.

+ apply hoare_asgn.

+ unfold "->>", assertion_sub, t_update, bassertion.
intros. simpl 1in *.
destruct H.
rewrite H. rewrite HO. split.
* admit.
* admit.

Admitted.

What kinds of mental tasks do you do when writing a proof?

“T““”S“pm”=””>:“wmmd‘ Theorem swap_valid : forall m n, outer_triple_valid (swap m n).
[{X=m/\Y=n 1} ->> Proof.
{({ X+Y) - ((X+Y) -Y¥Y)y=n/\NX+Y)-Y=m}l} .
X = X + Y 1Ntros m n.
S s unfold outer_triple_valid. simpl.
({X-Y=n/\Y=nm}} eapply hoare_seq.
X =X -Y
HXen/AY=ni - eapply hoare_seq.

}>. + apply hoare_asgn.

+ apply hoare_asgn.
- eapply hoare_consequence_pre.

+ apply hoare_asgn.

+ unfold "->>", assertion_sub, t_update, bassertion.
intros. simpl 1in *.
destruct H.
rewrite H. rewrite HO. split.
* admit.
* admit.

Admitted.

Subproblems

premise selection - picking out useful lemmas we could apply
tactic prediction - identifying which tactics to try

proof search - searching for different proof states that get us closer to Qed

Built 1n tactics

Definition swap (m n : nat) : decorated := aUtO o -Lla o
<{
{({ X=m/\NY=n }} ->
{f{ X+Y) - ((X+Y) - Y¥Y)=n/\NX+Y) -Y=m}}
X =X +Y
[{{X - (X-Y)=n/\X-Y=nm}} Theorem swap_valid : forall m n, outer_triple_valid (swap m n).
Y (1= X -Y
[{X-Y=n/\NY=m}}; Pr00f°
X i= X - Y intros m n.

{({X=n/\NY=m1}}

> unfold outer_triple_valid. simpl.

eapply hoare_seq.
- eapply hoare_seq.
+ apply hoare_asgn.
+ apply hoare_asgn.
- eapply hoare_consequence_pre.
+ apply hoare_asgn.
+ unfold "->>", assertion_sub, t_update, bassertion.
intros. simpl 1in *.
lia.
Qed.

auto/lia’s approach

premise selection: no premises, or manually provided

tactic prediction: hard coded

auto - reflexivity, assumption, apply
lia - linear positivstellensatz refutations, cutting plane proofs, case split

search procedure: decision procedure

Domain-specific Tactics

Definition swap (m n : nat) : decorated := Ltac assertlon auto —
<{ —
({X=m/\Y=n1} -> try auto; (* as 1n example 1, above *)
({ X+Y) - ((X+Y) -¥Y)y=n/\NX+Y)-Y=m}} " " :
e x4y try (unfold "->>", assertion_sub, t_update;
X - (X-Y)=n/\AX-Y=m}l} intros; simpl in *; Llia).
Y (=X -Y
({X-Y=n/\NY=m1}};
X=X -Y . . .
({X=n/AY=n}] Theorem swap_valid : forall m n, outer_triple_valid (swap m n).
> Proof.

intros m n.
unfold outer_triple_valid. simpl.
eapply hoare_seq.
- eapply hoare_seq.
+ apply hoare_asgn.
+ apply hoare_asgn.
- eapply hoare_consequence_pre.
+ apply hoare_asgn.
+ assertion_auto.
Qed.

Domain-specific solvers

Ltac verify := 1ntros; apply verification_correct; verify_assertion.
Ltac verify_assertion := ..

Theorem swap_valid : forall m n, outer_triple_valid (swap m n).
Proof.

verify.
Qed.

Approach of domain specific solvers

premise selection: hard coded
tactic prediction: hard coded

search procedure: hard coded

Domain-specific solvers

they require encoding domain knowledge

Ltac verify_assertion := repeat split;

simpl;
unfold assert_implies;

unfold bassertion in *; unfold beval in *;

unfold assertion_sub; intros;
repeat (simpl in *;
rewrite t_update_eq ||
(try rewrite t_update_neq;

[| (intro X; inversion X: fail)])):

simpl 1n *;

repeat match goal with [H : A = _]

destruct H end;
repeat rewrite not_true_iff_false in *;
repeat rewrite not_false_iff_true 1in

repeat rewrite negb_true_iff in *;
repeat rewrite negb_false_iff in *;
repeat rewrite eqb_eq in *;

repeat rewrite eqb_neq in *;

repeat rewrite leb_iff in *;

repeat rewrite leb_iff_conv in *;

unfold aeval in

try subst;
simpl 1n *;
repeat

match goal with

[st : state - _] =

match goal with
| [H : st = F _] =

rewrite & H in *; clear H

| [H : = st - _] =

rewrite <- H in *; clear H
end
end;
try eauto,
try lia.

CogqHammer and SMT Solvers

(2018)

[1] Lukasz Czajka and Cezary Kaliszyk. 2018. Hammer for Coq; Automation for Dependent Type Theory.

2 ?
What 1s an SMT Solver- Z 5

Satisfiability Modulo Theories

CVCS

SAT: 1s there a boolean assignment that satisfies this equation?

(serveGin \/ serveTonic) /\ (isMinor -> ~serveGin) /\ isMinor
isMinor: T; serveGin: F; serveTonilic: T

SMT: 1s there an assignment within the theory that satisfies this equation?

(serveGin \/ serveTonic) /\ (age <= 21 -> abv =0) /\ (age = 17)
/\ (serveGin => abv >= 40)
age: 17; abv: O; serveGin: F; serveTonic: T

https.//www.youtube.com/watch?v=rTOgg-t2rNM

https://www.youtube.com/watch?v=rTOqg-f2rNM

CoqHammer

\I;emma subgraph_vert_m : forall g' ¢
is_subgraph g' g -> M.In v g' ->

encode() encode() M.In v g.

4 Proof.

Qed.
solve()
(Z3, CVC4, E, Vampire) YO solution
* Lemma subgraph_vert_m : forall g' g
2
is_subgraph g' g -> M.In v g' ->
M.In v g.
reconstruct() .\ Proof .

unsuccesful qauto L: on use: Sin_domain.

Qed.

CogqHammer’s Approach

premise selection: k-nearest neighbours (k-NN)
tactic prediction: reconstruction tactics

search procedure: reconstruction tactics + SMT Solver

Performance

CoqGym - 68,501 theorems from 124 projects
proves 26.6% of theorems automatically!

CoqGym 1s a tough benchmark for Al tools

Proverbot9001 and
Tactic-by-Tactic Search

(2020)

Alex Sanchez-Stern, Yousef Alhessi, Lawrence Saul, and Sorin Lerner. 2020. Generating correctness proofs with neural networks.

Goal
(forall ...)

Hypothesis
(eq...)

Last Tactic
(apply ...)

Tactic Predictor

apply IHnN.

unfold eq.

intros.

Tactic-by-Tactic Search

Definition binary_constructor_sound
(constructor: expr -> expr -> expr)
(semantics: val -> val -> val) : Prop := ..

Theorem eval_mulhs:
binary_constructor_sound mulhs Val.mulhs.
Proof.

Tactic-by-Tactic Search

Theorem eval_mulhs:
binary_constructor_sound mulhs Val.mulhs.
Proof.

ool
o

Proverbot Architecture

Arg
Arg
Model ches
Features Top tactics b — Top tactic/arg pairs
“apply” istributi : | N T~ istributi
Distribution unfold <g> Distribution over “‘unfold eq”

: Tactic)
Prev tactic \ Model over tactics /

\ tactic/arg pairs/
Jih /_’®—’\—’ Jih
“forall” |=— — = | “intros” arg —> |“apply IHN”
\
Goal head / \ 7 \
ueqn Goal’ HypotheS|S’ “apply” / @ “intI'OS”
/ arg

. Similarity Score
Hypothesis head not (eq x y)|y > (x+1)[5.2

Figure 8. The overall prediction model, combining the tactic prediction and argument prediction models.

Predicting the next tactic

what are the most likely tactics to come next?

Encode Vectors of reals

Previous tactic
“apply” —>@—> & Distribution
over tactics
Goal head

“forall” —

Hypothesis head
“eq” — —

Scoring arguments

How useful 1s each argument for a specific tactic?

Tactic
“unfold”

Goal
not (eq x V)

Syntactic Similarity to Goal
5.2

Scoring arguments

How useful 1s each argument for a specific tactic?

60> <1 3 (> @ {5y Token oupu
Tactic name Scores

predicted by P,

“unfold” —(6 —(6 —(& —(c —(6 —(c)

not (eq X y) } Goal

Constant Encoded Goal
0 e e 8.22.13.09.2

Hypothesis/
% jf % % % Ou:_pel:? I;Tme
> (X + 1) }

5.2 y Hypothesis/

Hypothesis/Lemma Lemma
Similarity Score

Proverbot2001’s Approach

premise selection: preceding lemmas in the same file
tactic prediction: RNN-based architecture

search procedure: tactic-by-tactic search (beam search)

Performance

123 138 142
. §1§g 7 10
proves 17% of CoqgGym theorems automatically } :
proves theorems that CogHammer could not 20 2

P = Proverbot9001

using both together produces even better results

H = CogHammer
_n = _ with CogHammer

Baldur and
Whole Proof Synthesis

(2023)

Emily First, Markus N Rabe, Talia Ringer, and Yuriy Brun. 2023. Baldur: Whole-Proof Generation and Repair with Large Language Models.

Claude \%/
/é ANTHROP\C '

What about LLMs?

.. .
@ 0penAl Gemini

GPT-4

Minerva: Solving Quantitative Reasoning
Problems with Language Models

Google Research

 Mostly trained on natural language

* Further training on a large mathematics corpus

Chowdhery et al. (2022) “PaLM: Scaling Language Modeling with Pathways” 34
Lewkowycz et al. (2022) “Solving Quantitative Reasoning Problems with Language Models”

Question: Assume that the variance of the
first n natural numbers 1s 10, and the vari-
ance of the first m even natural numbers 1s 16.
Compute m + n.

Model output: Let 0% be the variance of the
first m even natural numbers, and 72 be the

variance of the first n natural numbers. Then,

2 n2—1 m2—1

we have 7° = = and 0 = - . We

solve the system of equations:

nz—l_

= 10

12
m?* — 1
3
This translates 1nto the system

= 16.

n’ =121
m? = 48 + 1 = 49.

Therefore, n = |11 | and m
n+m=|18|

Baldur: Proof Generation

Candidate Proof

Candidate ProoE Candidate ProoE

—>lel-acIz1i[e]al—> Candidate Proof Candidate Proo; -

Candidate Proof

Theorem
statement

Temperature Sampling
Each sample = independent proof attempt

35

Baldur: Proof Repair
Candidate Proo@

Theorem Candidate Proof Error
statement Message

Candidate Proof

36

Baldur: Training Example Creation

Theorem

. Proof QD
Proof GeneratK)n Source: — Generation | Candidate Proo

statement

training example Model
Human-written
Target:

Proof

Theorem
statement

_ : Incorrect Proof
Proof Repair Souree:

- Error
training example

Human-written
Proof

Target:

37

Proof Generation with context

AN

Proof
Generation —
Model with ——

Context Candidate
Proof

Theorem &
File Context

38

Generate with context

| 1 | | | 1

0.45 _
)]
&
=

S 04| .
=
5

> 035 E
—

a,

G
o

ke 0.3 -
w
-

0.25 | e Generate 8b B

—m— Generate w/ context 8b
| | | ! 1 | 1 |

0 10 20 30 40 50 60 70

number of proof attempts

39

LLM Performance on CoqGym

30%

22.5%

15%

7.5%

0%

CogHammer GPT-4 + Chain of Thought Proverbot 9001

Baldur’s Approach

premise context selection: preceding lines in the same file
tactic prediction: fine-tuned LLM

search procedure: whole-proof search

Rango and Retrieval Augmentation

(2024)

Kyle Thompson et. al. 2024. Rango: Adaptive retrieval-augmented proving for automated software verification.

Our Contribution

What information do LLMs need to generate proofs?

Helper Lemmas? Preceding Code? Other Proofs?

e

Prior Work Our Focus

43

Motivating Example

Theorem foo_idemp :
forall x, 2 < x = foo X X .
Proof.

foo_helper.
baz _1demp.

l1ia.
Qed.

44

Motivating Example

Theorem foo_1demp : Theorem bar_1idemp :
forall x, 2 < x = foo X X . forall x, 2 < X = bar x
Proof. Proof.
foo_helper. 77?77

baz _1demp.

l1ia.
Qed.

45

Motivating Example

Theorem foo_1demp : Theorem bar_1idemp :
forall x, 2 < x = foo X X . forall x, 2 < X = bar x X .
Proof. Proof.
foo_helper. bar_helper.

baz _1demp. baz_1demp.
l1ia. l1ia.
Qed. Qed.

46

Retrieval

Augmentation

System Components

ED:I Fine-tuning ED:I

Proof Search

47

How do we retrieve Lemmas?

We syntactically compare the proof state to each lemma declaration

Current Proof State Available Lemmas

ma add comm : V. n m : nat,
+ mMm=n+n

Lemma Lt _trans : V.nm p : nat,
n<m-m<p-n<2>p

43

How do we retrieve Proots?

We syntactically compare the proof state to each prior proof state

Current Proot State Prior Proof States

49

How Can We Make the LLM good at Rocq?

Theorem

Proof State
Prootf Script so far

Relevant Proofs

50

Rango Benefits Most from Similar Proofs

200

150

100

50

0

150

Rango

Theorems Proven out of 500

145

102

(w/0 Proofs) (w/0 Lemmas)

51

Rango Outperforms GPT-40

At 1400th the size!

Theorems Proven out of 100
40
30) 29
20
10
0
Rango GPT-40

Rango

Outperforms Prior Tools

3,400
2,550
1,700

350

3325

Rango

Theorems Proven out of 10,396

2441

Cog Hammer Proverbot

53

There’s a ton more work in this space!

Deepseek Prover 1.5 - LLMs + Reinforcement Learning and Monte Carlo Tree
Search

Cobblestone - isolates failures and recursively reprompts the LLM

LEGO-prover - maintains a growing library of helper lemmas

Saketh Kasibatla et. al. Cobblestone: A Divide-and-Conquer Approach for Automating Formal Verification.
Haiming Wang et. al. 2023. LEGO-Prover: Neural Theorem Proving with Growing Libraries. October 27, 2023.
Huajian Xin et. al. 2024. DeepSeek-Prover-V1.5: Harnessing Proof Assistant Feedback for Reinforcement Learning and Monte-Carlo Tree Search.

But theorem proving is far from solved

Can we build usable tools to help people prove theorems more easily?

Can we also help humans come up with specs?

Thanks! s

skasibatla@ucsd.edu

