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1 [Standard Track Only] Miscellaneous (16 points)

1.1 The type True in Coq is inhabited by the single value true.

□ True ⊠ False

(True is inhabited by I; true has type bool.)

1.2 The type bool->False in Coq is uninhabited.

⊠ True □ False

1.3 The term (fun P => P \/ ~P) False in Coq has type Prop.

⊠ True □ False

1.4 Authors of custom Ltac scripts for Coq need to be careful that their scripts do not diverge,
as this would create an inconsistency in Coq’s logic.

□ True ⊠ False

(A diverging tactic script cannot cause Coq to believe that it has a proof of something false.
Rather, the job of a tactic script is to build a proof object; if it diverges, we just don’t get any
proof at all.)

1.5 If two Imp commands c1 and c2 are equivalent (that is, st =[c1]=> st' iff st =[c2]=> st'
for all st and st'), then they also validate the same Hoare triples (that is, {{P}}c1{{Q}} iff
{{P}}c2{{Q}}, for all P and Q).

⊠ True □ False

1.6 Conversely, if two Imp commands validate the same Hoare triples, then they are equivalent.

⊠ True □ False

1.7 For every b : bexp and c1, c2 : com, either the command if b then c1 else c2 is equiv-
alent to c1 or it is equivalent to c2.

□ True ⊠ False

(Counterexample: Let b be X <= Y, let c1 be Z := 0, and let c2 be Z := 1.)

1.8 The big-step evaluation of programs in STLC + Fix can naturally be expressed in Coq as
either an Inductive relation or a Fixpoint.

□ True ⊠ False

(Since PCF programs may not terminate, defining evaluation using Fixpoint is awkward.)
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2 Inductive relations (12 points)

Two lists are “equivalent modulo stuttering” if compressing sequences of repeated elements into a
single element (e.g., compressing [1;1;2;3;3;3] into [1;2;3]) makes them identical.

For example:

equiv_mod_stuttering [1;2;2;2] [1;1;1;2;2].

equiv_mod_stuttering ([] : list nat) ([] : list nat).

~ (equiv_mod_stuttering [1] [2]).

~ (equiv_mod_stuttering [1] [1;2]).

(The list nat annotations in the second example are there to help type inference.) Update: Another
good example we noticed during the exam:

And we should have included an example underscoring the fact that ordering is still important.

Complete the inductive definition of equiv_modulo_stuttering:

Inductive equiv_mod_stuttering {X : Type} : list X -> list X -> Prop :=

Answer:

| Done : equiv_mod_stuttering [] []
| SameHead : forall x l1 l2,

equiv_mod_stuttering l1 l2 ->
equiv_mod_stuttering (x::l1) (x::l2)

| StutterLeft : forall x l1 l2,
equiv_mod_stuttering (x::l1) l2 ->
equiv_mod_stuttering (x::x::l1) l2

| StutterRight : forall x l1 l2,
equiv_mod_stuttering l1 (x::l2) ->
equiv_mod_stuttering l1 (x::x::l2).
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3 Program equivalence in Imp (14 points)

Recall that two Imp commands c1 and c2 are said to be equivalent when st =[c1]=> st' iff
st =[c2]=> st', for all st and st'.

Choose True or False for the following claims (and give counterexamples as appropriates).

3.1 If c always diverges (that is, there are no st and st' such that st =[c]=> st'), then c is
equivalent to c;c.

⊠ True □ False

If you chose False, give a counterexample (a command c that always diverges but such that c
is not equivalent to c;c):

3.2 Conversely, if c is equivalent to c;c, then c always diverges.

□ True ⊠ False

If you chose False, give a counterexample:

c = skip

3.3 If then c is constant (i.e., it always leaves the state unchanged), then c is equivalent to c;c.

⊠ True □ False

If you chose False, give a counterexample (a command c that is constant but such that c is
not equivalent to c;c):

3.4 Conversely, if c is equivalent to c;c, then c is constant.

□ True ⊠ False

If you chose False, give a counterexample:

c = if X=0 then X:=1 else skip fi

3.5 If there is some state st' in the range of c such that c fails to terminate when started in
state st' (that is, st =[c]=> st' for some starting state st but there is no st'' such that
st' =[c]=> st''), then c is not equivalent to c;c.

⊠ True □ False

If you chose False, give a counterexample:
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4 [Advanced Track Only] Program equivalence in Imp, continued (8 points)

State the conditions under which c is equivalent to c;c. That is, give necessary and sufficient
conditions on c that guarantee c is equivalent to c;c.

Answer: Command c is equivalent to c;c iff c is constant on every state in its range — that is, if
st =[c]=> st' implies st' =[c]=> st' for all st and st'.

Proof (not requested by the question and not required for full credit, but FYI):

• Suppose st =[c]=> st' implies st' =[c]=> st' for all st and st'. Then c and c;c terminate on
the same set of starting states, and they yield the same final state whenever they terminate—
that is, they are equivalent.

• Conversely, suppose st =[c]=> st' does not imply st' =[c]=> st'—that is, there are some st
and st' such that st =[c]=> st' but not st' =[c]=> st' (either c diverges when started on
st' or it terminates with some other state st''). Then clearly c and c;c are not equivalent:
the former terminates in st' but the latter does not.
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5 Stlc with iteration (14 points)

The Simply Typed Lambda-Calculus with fixpoints allows general recursion—that is, terms involv-
ing fix may diverge. If we want to avoid divergent terms while still expressing many computations
involving numbers, we can introduce a bounded iter combinator.

Iter takes a function f : T -> T, a number n : Nat that controls how many times the function is
executed, and an initial value for an “accumulator” a : T. Every step of the loop, it decrements n
and calls f to update the accumulator, stopping after n becomes 0.

Inductive tm: Type :=
| tm_abs (x: string) (p: ty) (body: tm)
| tm_app (e1: tm) (e2: tm)
| tm_succ (e: tm)
| tm_const (n: nat)
| tm_var (x: string)
(* NEW *)
| tm_iter (f: tm) (n: tm) (a: tm).

Here is an example of using iter to define addition of two natural numbers.

Definition add_f(a b: tm) :=
<{ iter (\acc: Nat, succ acc) a b }>.

Hint Unfold add_f: core.
Example add_ex1: add_f <{ 3 }> <{ 5 }> -->* <{ 8 }>.

5.1 First, let’s practice using iter. Define an apply_n function that takes as argument a func-
tion f : Nat -> Nat and a starting value n : Nat and composes f with itself n times. For
example, apply_n f 4 1 should yield f (f (f (f 1))), while apply_n f 0 1 should yield
1.

Definition apply_n (f : tm) (n : tm) :=

Definition apply_n (f n : tm) :=
<{

iter (\acc:Nat, \a:Nat, f (acc a)) n (\a:Nat, a)
}>.

Example apply_n_ex1: tm_app (apply_n <{ \i: Nat, succ i }> <{ 2 }>) <{ 0 }> -->* <{ 2 }>.

(N.b.: This part was a bit confusing, technically (it’s defining an STLC function as if it were
a Coq function). We decided during the exam to just skip it.)
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5.2 Now that you’ve got the hang of it, let’s extend the call-by-value operational semantics of
STLC with appropriate rules for iter. Note that the evaluation order of the arguments to
iter are from left to right, ie: f evaluates first, then n and finally a.

Inductive step : tm -> tm -> Prop :=
| ST_AppAbs : forall x T2 t1 v2,

value v2 ->
<{(\x:T2, t1) v2}> --> <{ [x:=v2]t1 }>

| ST_App1 : forall t1 t1' t2,
t1 --> t1' ->
<{t1 t2}> --> <{t1' t2}>

| ST_App2 : forall v1 t2 t2',
value v1 ->
t2 --> t2' ->
<{v1 t2}> --> <{v1 t2'}>

| ST_Succ1: forall e e',
e --> e' ->
<{ succ e }> --> <{ succ e' }>

| ST_Succ2: forall (n: nat),
<{ succ n }> --> <{ {S n} }>

(* FILL IN HERE *)

| ST_IterStep: forall f a (n: nat),
value f ->
value a ->
<{ iter f {S n} a }> --> <{ f (iter f n a) }>

| ST_IterEnd: forall f a,
value f ->
value a ->
<{ iter f 0 a }> --> <{ a }>

| ST_Iter1: forall f f' n a,
f --> f' ->
<{ iter f n a }> --> <{ iter f' n a }>

| ST_Iter2: forall f n n' a,
value f ->
n --> n' ->
<{ iter f n a }> --> <{ iter f n' a }>

| ST_Iter3: forall f n a a',
value f ->
value n ->
a --> a' ->
<{ iter f n a }> --> <{ iter f n a' }>
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5.3 Finally, give a typing rule for iter. Both examples above (add_f and apply_n) should be
well-typed.

Inductive has_type : context -> tm -> ty -> Prop :=
| T_Var : forall Gamma x T1,

Gamma x = Some T1 ->
Gamma |- x \in T1

| T_Abs : forall Gamma x T1 T2 t1,
x |-> T2 ; Gamma |- t1 \in T1 ->
Gamma |- \x:T2, t1 \in (T2 -> T1)

| T_App : forall T1 T2 Gamma t1 t2,
Gamma |- t1 \in (T2 -> T1) ->
Gamma |- t2 \in T2 ->
Gamma |- t1 t2 \in T1

| T_Succ: forall Gamma n,
Gamma |- succ n \in Nat

| T_Const: forall Gamma (n: nat),
Gamma |- n \in Nat

(* FILL IN HERE *)

| T_Iter: forall T Gamma f n a,
Gamma |- f \in (T -> T) ->
Gamma |- n \in Nat ->
Gamma |- a \in T ->
Gamma |- iter f n a \in T
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6 Hoare logic (12 points)

In this problem we’ll consider several Hoare triples, {{P}}c{{Q}}. For each one, you are asked
to choose either “Valid” or else the best description of its “degree of invalidity” from among the
following:

• “Inv at least once”: Invalid at least once—i.e., there exists a state satisfying P such that, when
started from this state, the command c will terminate in a state not satisfying Q. In this
case, provide a pair of states, one that satisfies the triple and one that does not.

• “Inv when terminating”: Always invalid mod termination—i.e., when started from any state
satisfying P, the command c will either diverge or terminate in a state not satisfying Q. Pro-
vide a pair of states, one that diverges and one for which Q is not satisfied.

• “Inv always”: Always invalid—i.e., when started from any state satisfying P, the command c
will definitely terminate in a state not satisfying Q.

“Best description” means the strongest description that applies—i.e., “Inv always” is better than
“Inv when terminating,” which is stronger than “Inv at least once”.

6.1 {{ True }}
if X = 1 then

Y := 0
else

Y := 1
{{ X = Y }}

□ Valid □ Inv at least once □ Inv when terminating ⊠ Inv always

If necessary provide a pair of states to justify your answer:

6.2 {{ X=0 }}
while X=0 do Y := Y+1

{{ False }}

⊠ Valid □ Inv at least once □ Inv when terminating □ Inv always

If necessary provide a pair of states to justify your answer:

6.3 {{ True }}
while X > 0 do Y := Y+1; X := X-1;

{{ X = Y }}

□ Valid ⊠ Inv at least once □ Inv when terminating □ Inv always

If necessary provide a pair of states to justify your answer:
X = 1 and Y = 0 (postcondition not satisfied)
X = 42 (diverges)
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6.4 {{ True }}
while X > 10 do X := X + 1;

{{ False }}

□ Valid □ Inv at least once ⊠ Inv when terminating □ Inv always

If necessary provide a pair of states to justify your answer:
X = 1 (postcondition not satisfied)
X = 42 (diverges)
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7 [Standard Track Only] Loop invariants (8 points)

For each pair of Hoare triple and proposed loop invariant Inv, your job is to decide whether Inv
can be used to prove a Hoare triple of this form:

{{ P }} while b do c end {{ Q }}

Specifically, you should decide whether Inv satisfies each of the three specific constraints from the
Hoare rule for while:

(1) Implied by precondition: P ->> Inv

(2) Preserved by loop body (when loop guard true): {{ Inv /\ b }} c {{ Inv }}

(3) Implies postcondition (when loop guard false): (Inv /\ ∼ b) ->> Q

We call them “Implied by Pre,” “Preserved,” and “Implies Post” below, for brevity.

7.1 {{ X=m /\ Y=n }}
while Y<>0 do

X ::= X + 1;
Y ::= Y - 1

end
{{ X = m+n }}

Proposed Inv Implied by Pre Preserved Implies Post

X > 0 □ ⊠ □

X = m+n □ □ ⊠

X = m+n-Y ⊠ ⊠ ⊠

7.2 {{ X = Y }}
while true do

X ::= X * Y
end

{{ X = Y * 37 }}

Proposed Inv Implied by Pre Preserved Implies Post

X <> 0 □ □ ⊠

exists (m : nat), X = Y + m ⊠ ⊠ ⊠

True ⊠ ⊠ ⊠
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8 Big-step vs. Small-step (6 points)

Briefly explain the difference between big-step and small-step styles of operational semantics. What
are the advantages of each style?

Answer: The big-step style directly relates a term to the final result of its evaluation; the small-
step style relates a term to a “slightly more reduced” term in which a single subphrase has taken
a single step of computation. Big-step definitions tend to be shorter and easier to read; one major
disadvantage is that they conflate terms that have no result because they diverge and terms that
have no result because their evaluation encounters an undefined state. Small-step definitions are
sometimes preferred because they are closer to implementations. Also, concurrent execution is much
easier to describe in a small-step style.
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9 Observational equivalence of STLC terms (16 points)

Consider the simply typed lambda-calculus (page 1 in the handout) with booleans.

Suppose t is a closed term. We say that a list of closed terms [a1; ...; an] saturates t if
|- t a1 a2 ... an \in Bool. (Update: Note that, although saturating argument lists look like Coq
lists, their elements do NOT need to all have the same STLC type.)

Suppose s and t are terms of the same type. We say that s and t are observationally equivalent if,
for every list of terms [a1; ..., an] that saturates both s and t, we have s a1 ... an -->* true
iff t a1 ... an -->* true.

For example, \x:Bool, x is observationally equivalent to \x:Bool, (\y:Bool, y) x, because they
yield the same result when applied to either of the two possible saturating argument lists, [true]
and [false].

For each of the following pairs of terms, check “Equivalent” if they are observationally equivalent
and “Inequivalent” if not. In the latter case, give a saturating list of arguments on which they yield
different boolean results.

9.1 \x:Bool, true and \x:Bool, false

□ Equivalent ⊠ Inequivalent

If “Inequivalent,” provide a saturating list of arguments on which the terms give different
results:

[true]

9.2 \x:Bool, x and \x:Bool, true

□ Equivalent ⊠ Inequivalent

If “Inequivalent,” provide a saturating list of arguments on which the terms give different
results:

[false]

9.3 \x:Bool, \y:Bool, x and \x:Bool, \y:Bool, y

□ Equivalent ⊠ Inequivalent

If “Inequivalent,” provide a saturating list of arguments on which the terms give different
results:

[false;true]

12



9.4 \x:Bool->Bool, x and \x:Bool->Bool, \y:Bool, x y

⊠ Equivalent □ Inequivalent

If “Inequivalent,” provide a saturating list of arguments on which the terms give different re-
sults:

9.5 \x:Bool->Bool, \y:Bool, x y and \x:Bool->Bool, \y:Bool, x true

□ Equivalent ⊠ Inequivalent

If “Inequivalent,” provide a saturating list of arguments on which the terms give different
results:

[(\z:Bool,z); false]

9.6 \x:Bool->Bool, \y:Bool, x y and \x:Bool->Bool, \y:Bool, x (x y)

□ Equivalent ⊠ Inequivalent

If “Inequivalent,” provide a saturating list of arguments on which the terms give different
results:

[(\z:Bool, if z then false else true); false]

9.7 true and false

□ Equivalent ⊠ Inequivalent

If “Inequivalent,” provide a saturating list of arguments on which the terms give different
results:

[]
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10 [Advanced Track Only] Preservation for STLC with sums (informal proof) (16
points)

The definition of the STLC extended with binary sum types, booleans, and Unit can be found on
page 3 of the accompanying reference sheet.

Fill in the missing cases below of the proof that reduction preserves types (that is, the cases for
T_Inl and T_Case). Use full, grammatical sentences, and make sure to state any induction hypotheses
explicitly.

You may refer to the usual substitution lemma without proof. (It is repeated on page 2 of the
handout, for reference.)

Theorem (Preservation): If |- t \in T and t --> t', then |- t' \in T.

Proof: By induction on a derivation of |- t \in T.

• We can immediately rule out T_Var, T_Abs, T_TRue, T_False, and T_Unit as final rules in the
derivation, since in each of these cases t cannot take a step.

• The cases for T_App, T_If, and T_Inr are omitted.

• If the final rule in the derivation of |- t \in T is T_Case, then

t = case t0 of inl x => t1 | inr x => t2,

with |- t0 : T1 + T2 and x:T1 |- t1 : T and x:T2 |- t2 : T. The induction hypothesis
states that, if t0 --> t0', then |- t0 : T1 + T2.

Inspecting the step relation, we see that there are three rules that could have been used to
step from t to t' — namely, ST_Case, ST_CaseInl, and ST_CaseInr.

If the step rule was ST_Case, then t0 --> t0' and t' = case t0' of inl x => t1 | inr x => t2.
By T_Case, we have |- t' \in T, as required.

If the step rule was ST_CaseInl, then t0 = inl T2 v1 and t' = [x:=v1]t1. By the substitution
lemma, |- t' \in T, as required.

The argument for the ST_CaseInr step rule is similar.

• [Write answer for the Inr rule...]
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11 Subtyping (14 points)

The setting for this problem is the simply typed lambda-calculus with booleans, products, and
subtyping (see page 9 in the handout).

11.1 Suppose t = (\x:Bool, (x,x))

Check all the types T such that |- t \in T (or “Not typeable”). Update: (You should select
"Some other type(s)," even though you have already selected some options above it, if the term
has more types than what are listed.)

⊠ Bool -> (Top*Top)

⊠ Bool -> (Bool*Bool)

□ Top -> (Bool*Bool) (Corrected from an earlier answer key)

□ Top -> Top

⊠ Top

⊠ Some other type(s)

□ Not typeable

11.2 Which is the minimal type T such that |- t \in T (or check “Not typeable”): (Update: The
"minimal type" of a term is the smallest (in the sense of the subtype relation) type possessed
by that term.

□ Bool -> (Top*Top)

□ Bool -> (Bool*Bool)

⊠ Top -> (Bool*Bool)

□ Top -> Top

□ Top

□ Some other type(s)

□ Not typeable
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11.3 Suppose t = (\x:Bool, \y:Top->Bool, y x) true

Check all the types T such that |- t \in T (or “Not typeable”):

⊠ (Top->Bool) -> Top

□ (Bool->Bool) -> Bool (Corrected from an earlier answer key)

□ (Top->Top) -> Top

⊠ Some other type(s)

□ Not typeable

11.4 Which is the minimal type T such that |- t \in T (or check “Not typeable”):

□ (Top->Bool) -> Top

□ (Bool->Bool) -> Bool

□ (Top->Top) -> Top

⊠ Some other type(s)

□ Not typeable
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11.5 Are there any types T and U such that x:T |- (\x:T. x x) \in U?

⊠ Yes □ No

If so, give one.
T = Top->Top
U = Top

11.6 Does the subtype relation contain an infinite, strictly descending chain — that is, is there is
an infinite sequence of types T1, T2, T3, ... such that, for each i, we have Ti+1<:Ti but not
Ti<:Ti+1?

⊠ Yes □ No

If you chose “Yes,” then show to construct such a chain by giving its first four elements.

T1 = Top
T2 = Top -> Top
T3 = Top -> (Top -> Top)
T4 = Top -> (Top -> (Top -> Top))
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12 References (8 points)

The simply typed lambda-calculus with references is summarized on page 5 of the accompanying
handout.

Recall (from References.v) that the preservation theorem for this calculus is stated like this

Theorem preservation_theorem := forall ST t t' T st st',
empty ; ST |- t \in T ->
store_well_typed ST st ->
t / st --> t' / st' ->
exists ST',

extends ST' ST /\
empty ; ST' |- t' \in T /\
store_well_typed ST' st'.

where:

• st and st' are stores (maps from locations to values);

• ST and ST' are store typings (maps from store locations to types);

• empty ; ST |- t \in T means that the closed term t has type T under the store typing ST;

• t / st --> t' / st' means that, starting with the store st, the term t steps to t' and changes
the store to st';

• store_well_typed ST st means that the contents of each location in the store st has the type
associated with this location in ST; and

• extends ST' ST means that the domain of ST is a subset of that of ST' and that they agree on
the types of common locations.

Briefly explain why the existential quantifier is needed in the statement of the preservation theorem.
I.e., what would go wrong if we stated the theorem like this?

Theorem preservation_wrong2 : forall ST T t st t' st',
empty ; ST |- t \in T ->
t / st --> t' / st' ->
store_well_typed ST st ->
empty ; ST |- t' \in T.

Answer:

The ST_RefValue rule yields a new location l, which will appear in t' as the result of the new
operation that has just been executed. But the original store ST will not contain a type for l (it will be
one element too short), and the claimed typing derivation in the conclusion of preservation_wrong2
will not exist (so the theorem will not be provable).

The existential quantifier in the good preservation theorem allows us to choose a one-element-larger
store typing ST' in the case where t steps using ST_RefValue, where the new binding in ST' gives
the new location l the type of the initial value in the new cell in the store.
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For Reference
Simply Typed Lambda Calculus with Booleans and Unit

Syntax:

T ::= T -> T arrow type
Bool boolean type
Unit unit type

t ::= x variable
| \x:T,t abstraction
| t t application
| true true
| false false
| if t then t else t conditional
| unit unit value

Values:

v ::= \x:T,t
| true
| false
| unit

Substitution:

[x:=s]x = s
[x:=s]y = y if x <> y
[x:=s](\x:T, t) = \x:T, t
[x:=s](\y:T, t) = \y:T, [x:=s]t if x <> y
[x:=s](t1 t2) = ([x:=s]t1) ([x:=s]t2)
[x:=s]true = true
[x:=s]false = false
[x:=s](if t1 then t2 else t3) = if [x:=s]t1 then [x:=s]t2 else [x:=s]t3
[x:=s]unit = unit

Small-step operational semantics:

value v2
--------------------------- (ST_AppAbs)
(\x:T2,t1) v2 --> [x:=v2]t1

t1 --> t1'
---------------- (ST_App1)
t1 t2 --> t1' t2
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value v1
t2 --> t2'

---------------- (ST_App2)
v1 t2 --> v1 t2'

-------------------------------- (ST_IfTrue)
(if true then t1 else t2) --> t1

--------------------------------- (ST_IfFalse)
(if false then t1 else t2) --> t2

t1 --> t1'
-------------------------------------------------------- (ST_If)
(if t1 then t2 else t3) --> (if t1' then t2 else t3)

Typing:

Gamma x = T1
----------------- (T_Var)
Gamma |- x \in T1

x |-> T2 ; Gamma |- t1 \in T1
----------------------------- (T_Abs)
Gamma |- \x:T2,t1 \in T2->T1

Gamma |- t1 \in T2->T1
Gamma |- t2 \in T2

---------------------- (T_App)
Gamma |- t1 t2 \in T1

--------------------- (T_True)
Gamma |- true \in Bool

--------------------- (T_False)
Gamma |- false \in Bool

Gamma |- t1 \in Bool Gamma |- t2 \in T1 Gamma |- t3 \in T1
---------------------------------------------------------------- (T_If)

Gamma |- if t1 then t2 else t3 \in T1

--------------------- (T_Unit)
Gamma |- unit \in Unit

Lemma substitution_preserves_typing : forall Gamma x U t v T,
x |-> U ; Gamma |- t \in T ->
|- v \in U ->
Gamma |- [x:=v]t \in T.
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Sum Types

(Based on the STLC with booleans and Unit.)
Syntax:

T ::= ...
| T + T sum type

t ::= ...
| inl T v tagged value (left)
| inr T v tagged value (right)
| case t of case

inl x => t
| inr x => t

Values:

v ::= ...
| inl v
| inr v

Substitution:

...
[x:=s](inl T t) = inl T ([x:=s]t)
[x:=s](inr T t) = inr T ([x:=s]t)
[x:=s](case t1 of inl y => t2 | inr y => t3)

= case [x:=s]t1 of
inl x => (if x=y then t2 else [x:=s]t2)

| inr x => (if x=y then t3 else [x:=s]t3)

Small-step operational semantics:

t1 --> t1'
------------------------ (ST_Inl)
inl T2 t1 --> inl T2 t1'

t2 --> t2'
------------------------ (ST_Inr)
inr T1 t2 --> inr T1 t2'

t0 --> t0'
------------------------------------------- (ST_Case)
case t0 of inl x1 => t1 | inr x2 => t2 -->

case t0' of inl x1 => t1 | inr x2 => t2

----------------------------------------------- (ST_CaseInl)
case (inl T2 v1) of inl x1 => t1 | inr x2 => t2

--> [x1:=v1]t1

----------------------------------------------- (ST_CaseInr)
case (inr T1 v2) of inl x1 => t1 | inr x2 => t2

--> [x2:=v2]t2
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Typing:

Gamma |- t1 \in T1
------------------------------ (T_Inl)
Gamma |- inl T2 t1 \in T1 + T2

Gamma |- t2 \in T2
------------------------------- (T_Inr)
Gamma |- inr T1 t2 \in T1 + T2

Gamma |- t0 \in T1+T2
x1|->T1; Gamma |- t1 \in T3
x2|->T2; Gamma |- t2 \in T3

------------------------------------------------------ (T_Case)
Gamma |- case t0 of inl x1 => t1 | inr x2 => t2 \in T3
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References

(Based on the STLC with booleans and Unit.)
Syntax:

T ::= ...
| Ref T Ref type

t ::= ...
| ref t allocation
| !t dereference
| t := t assignment
| l location

v ::= ...
| l location

Substitution:

[x:=s](ref t) = ref ([x:=s]t)
[x:=s](!t) = ! ([x:=s]t)
[x:=s](t1 := t2) = ([x:=s]t1) := ([x:=s]t2)
[x:=s]l = l

Small-step operational semantics:

value v2
------------------------------------- (ST_AppAbs)
(\x:T2.t1) v2 / st --> [x:=v2]t1 / st

t1 / st --> t1' / st'
--------------------------- (ST_App1)
t1 t2 / st --> t1' t2 / st'

value v1 t2 / st --> t2' / st'
---------------------------------- (ST_App2)

v1 t2 / st --> v1 t2' / st'

t1 / st --> t1' / st'
--------------------- (ST_Deref)
!t1 / st --> !t1' / st'

l < |st|
---------------------------------- (ST_DerefLoc)
!(loc l) / st --> lookup l st / st

t1 / st --> t1' / st'
----------------------------------- (ST_Assign1)
t1 := t2 / st --> t1' := t2 / st'

t2 / st --> t2' / st'
--------------------------------- (ST_Assign2)
v1 := t2 / st --> v1 := t2' / st'

l < |st|
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----------------------------------- (ST_Assign)
loc l := v / st --> unit / [l:=v]st

t1 / st --> t1' / st'
--------------------------- (ST_Ref)
ref t1 / st --> ref t1' / st'

-------------------------------- (ST_RefValue)
ref v / st --> loc |st| / st,v

Typing:
l < |ST|

-------------------------------------- (T_Loc)
Gamma; ST |- loc l : Ref (lookup l ST)

Gamma; ST |- t1 : T1
---------------------------- (T_Ref)
Gamma; ST |- ref t1 : Ref T1

Gamma; ST |- t1 : Ref T1
------------------------- (T_Deref)

Gamma; ST |- !t1 : T1

Gamma; ST |- t1 : Ref T2
Gamma; ST |- t2 : T2

---------------------------- (T_Assign)
Gamma; ST |- t1 := t2 : Unit

6



Products

(Based on the STLC with Booleans and Unit.)
Syntax:

t ::= Terms
| ...
| (t,t) pair
| t.fst first projection
| t.snd second projection

v ::= Values
| ...
| (v,v) pair value

T ::= Types
| ...
| T * T product type

Small-step operational semantics:

t1 --> t1'
-------------------- (ST_Pair1)
(t1,t2) --> (t1',t2)

t2 --> t2'
-------------------- (ST_Pair2)
(v1,t2) --> (v1,t2')

t1 --> t1'
------------------ (ST_Fst1)
t1.fst --> t1'.fst

------------------ (ST_FstPair)
(v1,v2).fst --> v1

t1 --> t1'
------------------ (ST_Snd1)
t1.snd --> t1'.snd

------------------ (ST_SndPair)
(v1,v2).snd --> v2
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Typing:

Gamma |- t1 \in T1 Gamma |- t2 \in T2
----------------------------------------- (T_Pair)

Gamma |- (t1,t2) \in T1*T2

Gamma |- t0 \in T1*T2
---------------------- (T_Fst)
Gamma |- t0.fst \in T1

Gamma |- t0 \in T1*T2
---------------------- (T_Snd)
Gamma |- t0.snd \in T2
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Subtyping

(Based on the STLC with Booleans, Unit, and Products.)
Syntax:

T ::= Types
| ...
| Top top type

Subtyping:

S <: U U <: T
---------------- (S_Trans)

S <: T

------ (S_Refl)
T <: T

-------- (S_Top)
S <: Top

S1 <: T1 S2 <: T2
-------------------- (S_Prod)
S1 * S2 <: T1 * T2

T1 <: S1 S2 <: T2
-------------------- (S_Arrow)
S1 -> S2 <: T1 -> T2

S1 <: T1 S2 <: T2
-------------------- (S_Prod)

S1*S2 <: T1*T2

Typing:

Gamma |- t1 \in T1 T1 <: T2
------------------------------- (T_Sub)

Gamma |- t1 \in T2
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