
CIS 500: Software Foundations Midterm I

October 12, 2021

Solutions



1 (8 points) Put an X in the True or False box for each statement, as appropriate.

(a) This proposition is provable in Coq with no axioms:

forall (f: A -> A) (x y: A), x = y -> f x = f y.

� True � False

(b) [] =~ Star re is provable for every re. (The definition of =~ can be found in the “For
Reference” section at the end.)

� True � False

(c) This proposition is provable in Coq with no axioms:

forall A (f: A -> A) (x y: nat), f x = f y -> x = y.

� True � False

(d) This proposition is provable in Coq with no axioms:

False -> False.

� True � False

(e) The result of Compute (In 42 [1;2]) is False.

� True � False

(f) Functions defined in Coq via Fixpoint must terminate on all inputs, but functions defined
with Definition need not always terminate.

� True � False

(g) For every property of numbers P : nat -> Prop, we can construct a boolean function
testP : nat -> bool such that testP reflects P.

� True � False

(h) There exists a proposition P such that the proposition ~~P <-> P is provable (with no addi-
tional axioms).

� True � False

1



2 [Standard Track Only] (10 points)

(a) How many subgoals will we have after running the tactic inversion H?

H: [a; b] = []
--------------------
2 = 2

� Tactic fails.

� 0 (solves the goal)

� 1

� 2

� 3

(b) How many subgoals will we have after running the tactic apply H?

P, Q, R: Prop
H: P -> Q -> R
--------------------
R

� Tactic fails.

� 0 (solves the goal)

� 1

� 2

� 3

(c) How many subgoals will we have after running the tactic apply H in H1?

P, Q, R: Prop
H: P -> Q -> R
H1: P
--------------------
R

� Tactic fails

� 0 (solves the goal)

� 1

� 2

� 3

2



(d) How many subgoals will we have after running the tactic induction H? (The definition of le
can be found in the “For Reference” section at the end.)

n, m: nat
H: lt n m
--------------------
le n m

� Tactic fails

� 0 (solves the goal)

� 1

� 2

� 3

(e) How many subgoals will we have after running the tactic apply (le_S n n (le_n n))?

n: nat
--------------------
le n (S n)

� Tactic fails

� 0 (solves the goal)

� 1

� 2

� 3

3



3 [Standard Track Only] (15 points) What is the type of each of the following Coq expressions?
(Check “none of the above” if the expression is typeable but none of the given choices is its type.
Check “ill-typed” if the expression does not have a type.)

(a) 4 <= 3

� leq

� False

� false

� Prop

� nat->nat->Prop

� ill-typed

� none of the above

(b) forall (A : Type) (m n : A), m = n \/ m <> n

� forall (A : Type) (m n : A), Prop

� forall (A : Type) A -> A -> Prop

� fun (A : Type) => fun (m n : A) => m =? n

� Prop

� True

� False

� ill-typed

� none of the above

(c) fun (x : nat) => False

� Prop

� nat -> Prop

� True

� False

� forall (n : nat), false

� forall (n : nat), False

� ill-typed

� none of the above

4



(d) forall (m : nat), m * m

� Prop

� Prop * Prop

� (nat,nat)

� False

� false

� nat -> nat

� fun (m : nat) => nat

� ill-typed

� none of the above

(e) beq_nat 3

� (nat,nat)

� bool

� Prop

� nat -> bool

� nat -> Prop

� ill-typed

� none of the above

(f) fun (P Q : Prop) => P -> Q

� (nat,nat)

� bool

� Prop

� Prop -> Prop

� Prop -> Prop -> Prop

� forall (P Q : Prop), Prop

� ill-typed

� none of the above

5



(g) fun (m : nat) (E : 0 <= m) => le_S 0 m E

� Prop

� nat -> Prop

� Prop -> Prop

� forall (m:nat), Prop -> Prop

� forall (m:nat), 0 <= m -> 0 <= S m

� forall (m:nat), 0 <= m -> Prop

� ill-typed

� none of the above

6



4 (15 points) For each of the types below, write a Coq expression that has that type, or else
write “uninhabited” if there are no such expressions.

(a) nat -> (nat -> bool)

Answer: Example: leb

(b) forall (X Y : Type), list X -> list Y

Answer: Example: fun X Y (l : list X) => []

(c) forall (X Y : Type), X -> (X->X->Y) -> Y

Answer: Example: fun X Y (a : X) (f : X->X->Y) => f a a

(d) forall (X Y : Type) (f : X -> Y), Y

Answer: Uninhabited

(e) Prop -> bool

Answer: Example: fun (P : Prop) => true

(f) In 2 [1;1;1]

Answer: Uninhabited

(g) ev 1

Answer: Uninhabited

(h) forall n : nat, ev n -> ev (S (S n))

Answer: Example: ev_SS

(i) (nat -> nat) -> nat

Answer: Example: fun f => (f 0)

7



5 (12 points) The higher-order function fold_left...

Fixpoint fold_left {A B} (f: B -> A -> B) (a: list A) (b: B) : B :=
match a with
| [] => b
| h :: ts => fold_left f ts (f b h)
end.

... is quite versatile — in fact we can easily define many commonly used functions non-recursively,
just by applying fold_left to appropriate arguments. For example this is how we can define map
using fold_left:

Definition map {A B} (f: A -> B) (a: list A) : list B :=
fold_left (fun acc e => acc ++ [f e]) a [].

Define the following functions using fold_left.

(a) Keep the elements of the input list for which the predicate f yields true.

Example: filter evenb [1;2;3;4] = [2;4]

Definition filter {A} (f: A -> bool) (a: list A) :=
fold_left

(fun acc e => if f e then acc ++ [e] else acc) a [].

(b) From a list of pairs, return a pair of lists.

Example: unzip [(1, true); (2, false); (3, true)] = [1;2;3] [true; false; true]

Definition unzip {X Y} (l: list (X*Y)) : (list X * list Y) :=
fold_left

(fun acc e =>
match acc with
| (a, b) => (a ++ [fst e], b ++ [snd e])
end)

l ([],[]).

8



(c) Apply a predicate f on each element of a list and return a pair of lists; if f is true for a given
element, put it on the left list, otherwise put it on the right list.

Example: split evenb [1;2;3;4] = ([2;4], [1;3])

Definition split {X} (l: list X) (f: X -> bool) : (list X * list X) :=
fold_left

(fun acc e =>
match acc with
| (a, b) => if f e then (a ++ [e], b) else (a, b ++ [e])
end)

l ([], []).

9



6 (12 points) An expression in Gallina is said to be canonical if it cannot be simplified. For
example, these expressions are canonical

O
S O
S (S O)
true
[true]

while these are not:

O + 1
negb true
[true] ++ []
(fun (x:nat) => true) 3

Note that the type bool has two canonical members, while nat has infinitely many.

The same notion of “canonical member” also works for expressions whose types involve Prop. For
example, given the definition of the binary <= relation from the IndProp chapter

Inductive le : nat -> nat -> Prop :=
| le_n (n : nat) : le n n
| le_S (n m : nat) (H : le n m) : le n (S m).

Notation "n <= m" := (le n m).

the proposition 1<=2 has one canonical member, namely

le_S 1 1 (le_n 1)

while the proposition 1<=0 is empty.

Each sub-question on the next page presents an inductively defined property P of natural numbers
and asks you to list the canonical members of P n for some n. If P n has infinitely many canonical
members, write “infinite.” If it has no members, write “empty.”

6.1 Define P as follows:

Inductive P : nat -> Prop :=
| A : P 0
| B : P 1
| C : P 0.

What are the canonical members of P 0? (List all of them in the space below.)

Check A : P 0.
Check C : P 0.

10



6.2 Define P as follows:

Inductive P : nat -> Prop :=
| A : P 0
| B (n : nat) : P n.

What are the canonical members of P 0?

Check A : P 0.
Check B 0 : P 0.

6.3 Define P as follows:

Inductive P: nat -> Prop :=
| B (n:nat) (H: P n) : P (S n).

What are the canonical members of P 1?

(* Empty! *)

11



6.4 Define P as follows:

Inductive P: nat -> Prop :=
| A : P 1
| B (n:nat) (H: P (S n)) : P (S n).

What are the canonical members of P 1?

(* Infinite! *)
Check A : P 1.
Check B 0 A : P 1.
Check B 0 (B 0 A) : P 1.
Check B 0 (B 0 (B 0 A)) : P 1.
Check B 0 (B 0 (B 0 (B 0 A))) : P 1.

6.5 Define P as follows:

Inductive P : nat -> Prop :=
| A : P 1
| B (n : nat) (H : n <> n) : P n.

What are the canonical members of P 1?

Check A : P 1.

6.6 Define P as follows:

Inductive P : nat -> Prop :=
| A (n : nat) (H0 : n <= 1) : P n.

What are the canonical members of P 1?

Check A 1 (le_n 1) : P 1.

12



7 (12 points) In this problem we will be working with the following definition of single-variable
polynomials over the natural numbers.

Inductive Poly :=
| Var
| Const (a: nat)
| Sum (a b: Poly)
| Prod (a b: Poly).

The associative law for addition says that changing a subexpression of the form x + (y + z) to
(x+ y) + z or vice versa yields an equivalent polymomial.

Your job is to complete the definition of the inductive relation reassoc, where reassoc p1 p2
means that p1 and p2 are “equivalent modulo associativity of plus.” For example,

reassoc (Prod (Sum (Const 0)
(Sum (Const 1) (Const 2)))

(Const 3))
(Prod (Sum (Sum (Const 0) (Const 1))

(Const 2))
(Const 3)).

(* i.e., (0 + (1 + 2)) * 3
is equivalent to ((0 + 1) + 2) * 3 *)

We’ve given you a few of the constructors; you supply the rest.

Inductive reassoc : Poly -> Poly -> Prop :=
| refl : forall p,

reassoc p p
| trans : forall p1 p2 p3,

reassoc p1 p2 ->
reassoc p2 p3 ->
reassoc p1 p3

| sum : forall p1 p1' p2 p2',
reassoc p1 p1' ->
reassoc p2 p2' ->
reassoc (Sum p1 p2) (Sum p1' p2')

| prod : forall p1 p1' p2 p2',
reassoc p1 p1' ->
reassoc p2 p2' ->
reassoc (Prod p1 p2) (Prod p1' p2')

| assoc : forall p1 p2 p3,
reassoc (Sum p1 (Sum p2 p3)) (Sum (Sum p1 p2) p3)

| symm : forall p1 p2,
reassoc p1 p2 ->
reassoc p2 p1.

13



8 [Standard Track Only] (6 points)

Let’s translate some English statements about polynomials into Coq theorems. First, some defini-
tions...

An evaluation function for polynomials can be written as follows:

Fixpoint eval(p: Poly)(x: nat): nat :=
match p with
| Var => x
| Const n => n
| Sum a b => eval a x + eval b x
| Prod a b => eval a x * eval b x
end.

A polynomial is constant if it always yields the same result, no matter the value of the variable:

Definition constant (p : Poly) : Prop :=
exists r, forall n, eval p n = r.

Two polynomials are equivalent if they yield the same result for every value of the variable:

Definition equiv (p1 p2 : Poly) : Prop :=
forall n, eval p1 n = eval p2 n.

The degree of a polynomial is the highest power of the variable that appears in its “fully multiplied
out” form. For example x ∗ x+ x+ 2+ x ∗ x ∗ 3 and (x+ 1) ∗ (x+ 2) both have degree 2. Here is a
definition of the degree function.

Fixpoint degree(p: Poly): nat :=
match p with
| Var => 1
| Const a => 0
| Sum a b => max (degree a) (degree b)
| Prod a b => degree a + degree b
end.

(a) Write a theorem stating that “degree-zero polynomials are constant and vice versa.” (No need
to prove it—just state the theorem.)

Theorem deg0_constant : forall (p : Poly),

degree p = 0 <-> constant p.

(b) Write a theorem stating that “Every polynomial of degree at most 1 is equivalent to one of
the form ax+ b.”

Theorem nf : forall (p : Poly),

degree p <= 1
<-> exists a b, equiv p (Sum (Prod (Const a) Var) (Const b)).

14



9 [Advanced Track Only] (14 points)

Recall the definition of In

Fixpoint In {A : Type} (x : A) (l : list A) : Prop :=
match l with
| [] => False
| x' :: l' => x' = x \/ In x l'
end.

and the following lemma from Logic.v:

Lemma In_app_iff : forall A l l' (a:A),
In a (l++l') <-> In a l \/ In a l'.

Give a careful informal proof of the left-to-right direction of this theorem. If your proof goes by
induction, make sure to state any induction hypotheses explicitly.

Lemma In_app_iff : forall A l l' (a:A),
In a (l++l') -> In a l \/ In a l'.

Proof: By induction on the list l.

Base case: l = []. In this case, l++l' = l', so

In a (l++l') = In a l',

and the result is immediate.

Induction case: l = h::t, with induction hypothesis

IH = In a (t++l') -> In a l \/ In a l'.

By the definition of In, we know

In a (l++l')
i.e., In a ((h::t)++l'))
i.e., In a (h::(t++l'))
i.e., a=h \/ In a (t++l')

Suppose a=h. Then

a=h \/ In a t
i.e., In a (h::t)
i.e., In a l

and the result is immediate.

The other possibility is In a (t++l'), and the result is
again immediate.

15



10 [Advanced Track Only] (17 points)

Recall the Fixpoint definition of list membership from the Logic chapter:

Fixpoint In {A : Type} (x : A) (l : list A) : Prop :=
match l with
| [] => False
| x' :: l' => x' = x \/ In x l'
end.

If we define a simple datatype of binary trees...

Inductive tree (A : Type) : Type :=
| leaf
| node (label : A) (ll rr : tree A).

... we can give a similar definition of “tree membership” like this:

Fixpoint TIn {A : Type} (x : A) (t : tree A) : Prop :=
match t with
| leaf _ => False
| node _ a ll rr => a = x \/ TIn x ll \/ TIn x rr
end.

Next, let’s define a function squish that flattens a tree into the list of its labels:

Fixpoint squish {A : Type} (t : tree A) : list A :=
match t with
| leaf _ => []
| node _ a ll rr => [a] ++ (squish ll ++ squish rr)
end.

Now we can state a theorem saying, informally, that “squishing commutes with membership”—i.e.,
that a given element x is a member of a tree t iff x is a member of squish t.

Theorem TIn_squish : forall A (x : A) (t : tree A),
In x (squish t) -> TIn x t.

On the next page, give a careful informal proof of this theorem. If your proof goes by induction,
make sure to state any induction hypotheses explicitly.

16



Theorem TIn_squish : forall A (x : A) (t : tree A),
In x (squish t) -> TIn x t.

Proof:

By induction on t.

- Base case: t = leaf. Then squish t is [] by definition, and
TIn A x t = In A x (squish t) = False.

The result is immediate.

- Induction case: We are given
t = node a ll rr
IH1: In A x (squish ll) -> TIn A x ll
IH2: In A x (squish rr) -> TIn A x rr

By the definition of squish,

squish t = [a] ++ (squish ll ++ squish rr).

Reason as follows:

In A x (squish t)
<-> In A x [a] \/ In A x ll \/ In A x rr.

(by In_app_iff, twice)
-> In A x [a] \/ TIn A x (squish ll) \/ TIn A x (squish rr).

(by IH1 and IH2)
-> x = a \/ False \/ TIn A x (squish ll) \/ TIn A x (squish rr).

(by the definition of In)
<-> x = a \/ TIn A x (squish ll) \/ TIn A x (squish rr).

By the definition of TIn A x (node a ll rr),

In A x (squish t) -> x = TIn A x t

as required.

17



For Reference

Fixpoint beq_nat(a b: nat): bool :=
match a, b with
| S a’, S b’ => beq_nat a’ b’
| 0, 0 => true
| _, _ => false
end.

Inductive list (X:Type) : Type :=
| nil
| cons (x : X) (l : list X).

Fixpoint fold_left {A B} (f: B -> A -> B) (a: list A) (b: B) : B :=
match a with
| [] => b
| h :: ts => fold_left f ts (f b h)

end.

Fixpoint In {A : Type} (x : A) (l : list A) : Prop :=
match l with
| [] => False
| x’ :: l’ => x’ = x \/ In x l’
end.

Inductive le : nat -> nat -> Prop :=
| le_n (n : nat) : le n n
| le_S (n m : nat) (H : le n m) : le n (S m).

Notation "n <= m" := (le n m).

Definition lt (n m: nat) := le (S n) m.

Inductive ev : nat -> Prop :=
| ev_0 : ev 0
| ev_SS (n : nat) (H : ev n) : ev (S (S n)).

1



Inductive reg_exp (T : Type) : Type :=
| EmptySet
| EmptyStr
| Char (t : T)
| App (r1 r2 : reg_exp T)
| Union (r1 r2 : reg_exp T)
| Star (r : reg_exp T).

Inductive exp_match {T} : list T -> reg_exp T -> Prop :=
| MEmpty : [] =~ EmptyStr
| MChar x : [x] =~ (Char x)
| MApp s1 re1 s2 re2

(H1 : s1 =~ re1)
(H2 : s2 =~ re2)

: (s1 ++ s2) =~ (App re1 re2)
| MUnionL s1 re1 re2

(H1 : s1 =~ re1)
: s1 =~ (Union re1 re2)

| MUnionR re1 s2 re2
(H2 : s2 =~ re2)

: s2 =~ (Union re1 re2)
| MStar0 re : [] =~ (Star re)
| MStarApp s1 s2 re

(H1 : s1 =~ re)
(H2 : s2 =~ (Star re))

: (s1 ++ s2) =~ (Star re)

where "s =~ re" := (exp_match s re).

2


