CIS 500: Software Foundations Midterm 1

October 12, 2021

Name (printed):

Username (PennKey login id):

My signature below certifies that I have complied with the University of Pennsylvania’s Code of
Academic Integrity in completing this examination.

Signature: Date:

Directions:

e This exam contains both standard and advanced-track questions. Questions with no
annotation are for both tracks. Questions for just one of the tracks are marked “Standard
Track Only” or “Advanced Track Only.”

Do not waste time or confuse the graders by answering questions intended for the other
track.

To make sure, please find the questions for the other track as soon as you begin the
exam and cross them out!

e Before beginning the exam, please write your PennKey (login ID) at the top of each
even-numbered page (so that we can find things if a staple fails!).

Mark the box of the track you are following.

Standard Advanced

(8 points) Put an X in the True or False box for each statement, as appropriate.

This proposition is provable in Coq with no axioms:

forall (f: A > A) (xy: A, x=y->fx=1fy.

O True O False

[1 =~ Star re is provable for every re. (The definition of =~ can be found in the “For
Reference” section at the end.)

O True O False

This proposition is provable in Coq with no axioms:

forall A (f: A -> A) (xy: nat), fx=fy ->x=y.

O True O False

This proposition is provable in Coq with no axioms:

False -> False.

O True O False

The result of Compute (In 42 [1;2]) is False.

O True O False

Functions defined in Coq via Fixpoint must terminate on all inputs, but functions defined
with Definition need not always terminate.

O True O False

For every property of numbers P : nat -> Prop, we can construct a boolean function
testP : mat -> bool such that testP reflects P.

O True O False

There exists a proposition P such that the proposition “~“P <-> P is provable (with no addi-
tional axioms).

O True O False

[Standard Track Only] (10 points)

(a) How many subgoals will we have after running the tactic inversion H?
H: [a; b] = []

O Tactic fails.

O 0 (solves the goal)

01

02

03

(b) How many subgoals will we have after running the tactic apply H?

P, Q, R: Prop
H: P ->Q -> R

R
O Tactic fails.

O 0 (solves the goal)
01

02

03

(c) How many subgoals will we have after running the tactic apply H in H1?

P, Q, R: Prop
H: P ->Q ->R
Hi: P

O Tactic fails

O 0 (solves the goal)
01

02

03

(d) How many subgoals will we have after running the tactic induction H? (The definition of le
can be found in the “For Reference” section at the end.)

O Tactic fails

O 0 (solves the goal)
01

0 2

O3

(e) How many subgoals will we have after running the tactic apply (le_S n n (le_n n))?

O Tactic fails

O 0 (solves the goal)
01

0 2

O3

[Standard Track Only] (15 points) What is the type of each of the following Coq expressions?
(Check “none of the above” if the expression is typeable but none of the given choices is its type.
Check “ill-typed” if the expression does not have a type.)

(a) 4 <= 3
leq
False

false

O

D

0

U Prop
] nat->nat->Prop
O ill-typed

0

none of the above

(b) forall (A : Type) (mn : A), m=n \/ m <> n
[0 forall (A : Type) (m n : A), Prop

forall (A : Type) A -> A -> Prop

fun (A : Type) => fun (mn : A) =>m =7 n

Prop

True

False

ill-typed

O 0O 0 oood

none of the above

(c) fun (x : nat) => False
] Prop

[0 nat -> Prop

O True

(] False

J forall (n : nat), false
O forall (n : nat), False
O ill-typed

O

none of the above

(d) forall (m : nat), m * m
[J Prop

Prop * Prop

(nat,nat)

False

false

nat -> nat

fun (m : nat) => nat

ill-typed

O 0O 0 0oooogd

none of the above

(e) beqg_nat 3
(nat,nat)
bool

Prop

nat -> bool
nat -> Prop

ill-typed

O 0O 0 ooodg

none of the above

(f) fun (P Q : Prop) => P -> Q
(nat,nat)

bool

Prop

Prop -> Prop

Prop -> Prop -> Prop
forall (P Q : Prop), Prop

ill-typed

O 0O 0o0ooogo-™

none of the above

(g) fun (m : nat) (E: 0 <=m) =>1e.SOmE
Prop

nat -> Prop

Prop -> Prop

forall (m:nat), Prop -> Prop

forall (m:nat), 0 <=m -> 0 <= S m
forall (m:nat), O <= m -> Prop

ill-typed

O 0O 0o0oo0oo0odaoo™

none of the above

(15 points) For each of the types below, write a Coq expression that has that type, or else
write “uninhabited” if there are no such expressions.

(a) nat -> (nat -> bool)

(b) forall (X Y : Type), list X -> list Y

(c) forall (X Y : Type), X -> (X->X->Y) -> Y

(d) forall (XY : Type) (f : X ->Y), Y

(e) Prop -> bool

(f) In 2 [1;1;1]

(g) ev 1

(h) forall n : nat, evn -> ev (S (S n))

(i) (nat -> nat) -> nat

(12 points) The higher-order function fold_left...

Fixpoint fold_left {A B} (f: B -> A -> B) (a: list A) (b: B) : B :
match a with

| [1 =D
| h :: ts => fold_left f ts (f b h)
end.

. is quite versatile — in fact we can easily define many commonly used functions non-recursively,
just by applying fold_left to appropriate arguments. For example this is how we can define map
using fold_left:

Definition map {A B} (f: A -> B) (a: list A) : list B :=
fold_left (fun acc e => acc ++ [f e]) a [].

Define the following functions using fold_left.

(a) Keep the elements of the input list for which the predicate f yields true.
Example: filter evenb [1;2;3;4] = [2;4]

Definition filter {A} (f: A -> bool) (a: list A) :=
fold_left

(b) From a list of pairs, return a pair of lists.

Example: unzip [(1, true); (2, false); (3, true)] = [1;2;3] [true; false; truel

Definition unzip {X Y} (1: list (XxY)) : (list X * list Y) :=
fold_left

(c) Apply a predicate £ on each element of a list and return a pair of lists; if £ is true for a given
element, put it on the left list, otherwise put it on the right list.

Example: split evenb [1;2;3;4] = ([2;4], [1;3])

Definition split {X} (1: 1list X) (f: X -> bool) : (list X * list X) :=
fold_left

10

@ (12 points) An expression in Gallina is said to be canonical if it cannot be simplified. For
example, these expressions are canonical

0

S 0

S (s 0)
true
[true]

while these are not:

0+ 1

negb true

[true]l ++ []

(fun (x:nat) => true) 3

Note that the type bool has two canonical members, while nat has infinitely many.

The same notion of “canonical member” also works for expressions whose types involve Prop. For
example, given the definition of the binary <= relation from the IndProp chapter

Inductive le : nat -> nat -> Prop :=
| le_n (n : nat) : le nn
| 1le.S (nm : nat) (H : le nm) : le n (S m).

Notation "n <= m" := (le n m).

the proposition 1<=2 has one canonical member, namely

le_.S 1 1 (le_n 1)
while the proposition 1<=0 is empty.

Each sub-question on the next page presents an inductively defined property P of natural numbers
and asks you to list the canonical members of P n for some n. If P n has infinitely many canonical
members, write “infinite.” If it has no members, write “empty.”

Define P as follows:

Inductive P : nat -> Prop :=

| A: PO
| B:P1
| ¢C: PoO.

What are the canonical members of P 07 (List all of them in the space below.)

11

Define P as follows:

Inductive P : nat -> Prop :=
| A: PO
| B (n : nat) : P n.

What are the canonical members of P 07

Define P as follows:

Inductive P: nat -> Prop :=
| B (n:nat) (H: Pn) : P (S n).

What are the canonical members of P 17

12

Define P as follows:

Inductive P: nat -> Prop :=
| A :P1

| B (n:nat) (H: P (Sn)) : P (Sn).

What are the canonical members of P 17

Define P as follows:

Inductive P : nat -> Prop :=
| A :P1
| B (n: nat) (H: n<>mn) : Pn.

What are the canonical members of P 17

Define P as follows:

Inductive P : nat -> Prop :=
| A (n: nat) (HO : n <= 1) : P n.

What are the canonical members of P 17

13

(12 points) In this problem we will be working with the following definition of single-variable
polynomials over the natural numbers.

Inductive Poly :=

| Var

| Const (a: nat)

| Sum (a b: Poly)

| Prod (a b: Poly).

The associative law for addition says that changing a subexpression of the form = + (y + z) to
(z +y) + 2z or vice versa yields an equivalent polymomial.

Your job is to complete the definition of the inductive relation reassoc, where reassoc pl p2
means that pl and p2 are “equivalent modulo associativity of plus.” For example,

reassoc (Prod (Sum (Const 0)
(Sum (Const 1) (Const 2)))
(Const 3))
(Prod (Sum (Sum (Const 0) (Const 1))
(Const 2))
(Const 3)).
(x i.e., O+ 1 +2) 3
is equivalent to ((0 + 1) + 2) % 3 *)

We’ve given you a few of the constructors; you supply the rest.

Inductive reassoc : Poly -> Poly -> Prop :=
| refl : forall p,
reassoc p p
| trans : forall pl p2 p3,
reassoc pl p2 ->
reassoc p2 p3 ->
reassoc pl p3
| sum : forall pl pl' p2 p2',
reassoc pl pl1' ->
reassoc p2 p2' ->
reassoc (Sum pl p2) (Sum pl' p2')

14

[Standard Track Only] (6 points)

Let’s translate some English statements about polynomials into Coq theorems. First, some defini-
tions...

An evaluation function for polynomials can be written as follows:

Fixpoint eval(p: Poly) (x: nat): nat :=
match p with
| Var => x
| Const n => n
| Sum a b => eval a x + eval b x
| Prod a b => eval a x * eval b x
end.

A polynomial is constant if it always yields the same result, no matter the value of the variable:

Definition constant (p : Poly) : Prop :=
exists r, forall n, eval pn =r.

Two polynomials are equivalent if they yield the same result for every value of the variable:

Definition equiv (pl p2 : Poly) : Prop :=
forall n, eval pl n = eval p2 n.

The degree of a polynomial is the highest power of the variable that appears in its “fully multiplied
out” form. For example zxx +x +2+x*x %3 and (z+ 1) % (x + 2) both have degree 2. Here is a
definition of the degree function.
Fixpoint degree(p: Poly): nat :=

match p with

| Var => 1

| Const a => 0

| Sum a b => max (degree a) (degree b)

| Prod a b => degree a + degree b

end.

(a) Write a theorem stating that “degree-zero polynomials are constant and vice versa.” (No need
to prove it—just state the theorem.)

Theorem degO_constant : forall (p : Poly),

(b) Write a theorem stating that “Every polynomial of degree at most 1 is equivalent to one of
the form azx + b.”

Theorem nf : forall (p : Poly),

15

[9] [Advanced Track Only] (14 points)

Recall the definition of In

Fixpoint In {A : Type} (x : A) (1 : list A) : Prop :=
match 1 with

| [1 => False
[x' ¢+ 1" =>x'"=%x\/Inx1'
end.

and the following lemma from Logic.v:

Lemma In_app_iff : forall A 1 1' (a:4),
Ina (1++1') <->Inal \/ Ina 1'.

Give a careful informal proof of the left-to-right direction of this theorem. If your proof goes by
induction, make sure to state any induction hypotheses explicitly.

Lemma In_app_iff : forall A 1 1' (a:h),
Ina (1++1') > Inal \/ Ina 1'.

Proof:

16

[Advanced Track Only] (17 points)

Recall the Fixpoint definition of list membership from the Logic chapter:

Fixpoint In {A : Type} (x : A) (1 : list A) : Prop :=
match 1 with

| [1 => False
[x' :: 1" =>x'"=%x\/Inx1'
end.

If we define a simple datatype of binary trees...

Inductive tree (A : Type) : Type :=
| leaf
| node (label : A) (11 rr : tree A).

. we can give a similar definition of “tree membership” like this:

Fixpoint TIn {A : Type} (x : A) (t : tree A) : Prop :=
match t with

| leaf _ => False
| node _ all rr => a =x \/ TIn x 11 \/ TIn x rr
end.

Next, let’s define a function squish that flattens a tree into the list of its labels:

Fixpoint squish {A : Type} (t : tree A) : list A :=
match t with

| leaf _ => []
| node _ a 11 rr => [a] ++ (squish 11 ++ squish rr)
end.

Now we can state a theorem saying, informally, that “squishing commutes with membership™—i.e.,
that a given element x is a member of a tree t iff x is a member of squish t.

Theorem TIn_squish : forall A (x : A) (t : tree A),
In x (squish t) -> TIn x t.

On the next page, give a careful informal proof of this theorem. If your proof goes by induction,
make sure to state any induction hypotheses explicitly.

17

Theorem TIn_squish : forall A (x : A) (t : tree A),
In x (squish t) -> TIn x t.

Proof:

18

19

For Reference

Fixpoint beq_nat(a b: nat): bool :=
match a, b with
| S a’, Sb’> => beq_nat a’ b’
| 0, 0 => true
| _, _ => false
end.

Inductive list (X:Type) : Type :=
| nil
| cons (x : X) (1 : list X).

Fixpoint fold_left {A B} (f: B -> A -> B) (a: list A) (b: B) : B :
match a with
| [1 =>0b
| h :: ts => fold_left f ts (f b h)
end.

Fixpoint In {A : Type} (x : A) (1 : list A) : Prop :=
match 1 with

| [=> False
| x? :: 1 =>%x>=x\/ Inx 1’
end.

Inductive le : nat -> nat -> Prop :=
| 1le_.n (n : nat) :lenn
| leS (nm: nat) (H: lenm) : len (Sm.

Notation "n <= m" := (le n m).
Definition 1t (n m: nat) := le (S n) m.
Inductive ev : nat -> Prop :=

| ev_0 :ev 0
| ev_.SS (n : nat) (H : evn) : ev (S (S n)).

Inductive reg_exp (T : Type) : Type :=
| EmptySet
| EmptyStr
| Char (t : T)

| App (rl r2 : reg_exp T)

| Union (rl r2 : reg_exp T)

| Star (r : reg_exp T).

Inductive exp_match {T} : list T -> reg_exp T -> Prop :=
| MEmpty : [] =" EmptyStr
| MChar x : [x] =" (Char x)
| MApp sl rel s2 re2
(H1 : s1 =" rel)
(H2 : s2 =" re2)
(s1 ++ s2) =" (App rel re2)
| MUnionL s1 rel re2
(H1 : s1 =" rel)
: 81 =7 (Union rel re2)
| MUnionR rel s2 re2
(H2 : 82 =" re2)
: 82 =7 (Union rel re2)
| MStarO re : [] =" (Star re)
| MStarApp s1 s2 re
(H1 : s1 =" re)

(H2 : s2 =~ (Star re))
(sl ++ s2) =" (Star re)
where "s =" re" := (exp_match s re).

