
CIS 500: Software Foundations Midterm II

November 18, 2021

Solutions

1 Program Equivalence (12 points)

The Equiv chapter introduced the concept of program equivalence:

• Two commands c1 and c2 are equivalent if, for every starting state st, either c1 and c2 both
diverge or both terminate in the same final state st’.

For example,
while X < 100 do X := X - 1; X := X - 1 end

and
while X < 100 do X := X - 2 end

are equivalent.

In this problem, we will work with some related notions:

• Commands c1 and c2 are equivalent modulo termination if, for every starting state st, if c1
terminates in state st’1 and c2 terminates in state st’2, then st’1 = st’2.

“Equivalent modulo termination” means that both commands yield the same final state when-
ever they both terminate (but they do not necessarily both terminate or both diverge on a
given starting state).

For example,
while true do skip end

and
X := 5

are equivalent modulo termination.

• Commands c1 and c2 are sometimes different if, for some starting state st, command c1
terminates in state st’1 and c2 terminates in state st’2, with st’1 <> st’2.

For example,
if X = 0 then Y := 5 else skip end

and
if X = 0 then Y := 42 else skip end

are sometimes different.

• Commands c1 and c2 are always different if, for every starting state st such that c1 terminates
in state st’1 and c2 terminates in state st’2, we have st’1 <> st’2.

For example,
X := X + 1

and
X := X + 2

are always different.

1

Also:

• A command C is total if it terminates on all input states – i.e., if, for every st, running c
starting in state st yields some final state st’.

For example,

while X > 10 do X := X - 1 end

is total, but

while X > 10 do X := X + 1 end

is not.

Let’s begin with a few warmup questions to clarify the relations among all these concepts...

1.1 Two commands that are equivalent are also equivalent modulo termination.

� True � False

1.2 Two commands that are sometimes different are also always different.

� True � False

1.3 Two commands that are equivalent modulo termination and are both total are equivalent.

� True � False

1.4 It is possible for two commands to be simultaneously equivalent and sometimes different.

� True � False

1.5 If two commands are not equivalent, then they are sometimes different.

� True � False

1.6 If two total commands are not equivalent, then they are sometimes different.

� True � False

2

2 Program Equivalence, continued (10 points)

For each of the following pairs of programs, mark the term that best describes how they are related.
(If the programs are both Equivalent and Equivalent Modulo Termination, mark just Equivalent.)

2.1
Y := X + 1;
X := X + 1

X := X + 1;
Y := X + 1

� Equiv � Eqv mod term � Sometimes diff � Always diff

2.2
X := 1;
while X > 0 do X := X-1 end

X := 42;
while X > 0 do X := X-1 end

� Equiv � Eqv mod term � Sometimes diff � Always diff

2.3
X := 1;
while X > 10 do X := X+1 end

X := 42;
while X > 10 do X := X+1 end

� Equiv � Eqv mod term � Sometimes diff � Always diff

2.4
while X > 1 do X := X+1 end while X > 42 do X := X+1 end

� Equiv � Eqv mod term � Sometimes diff � Always diff

2.5
while true do X := X + 1 end while true do X := X - 1 end

� Equiv � Eqv mod term � Sometimes diff � Always diff

3

3 [Standard Track Only] Loop Invariants (18 points)

Recall that a loop invariant for a while loop

while b do c end

is an assertion P such that {{P /\ b}} c {{P}} is a valid Hoare triple. (To be useful in a larger
proof, we would also want that P is implied by whatever was true before the loop and that P implies
whatever we need to be true after the loop. For present purposes, we are ignoring these conditions
and focusing on just the loop body.)

For example, the assertion X = Y/2 is an invariant of the loop

while Y > 1 do
X := X - 1;
Y := Y - 2

end

because the triple

{{ X = Y/2 /\ Y > 1 }}
X := X - 1;
Y := Y - 2

{{ X = Y/2 }}

is valid, but X = Y is not an invariant of this loop, because the triple

{{ X = Y /\ Y > 1 }}
X := X - 1;
Y := Y - 2

{{ X = Y }}

is not valid.

For each loop shown below, check the “Yes” box next to each assertion that is a valid loop invariant.
Check the “No” box next to those that are not.

3.1 while X<100 do
X := X+1;
Y := Y-1

end

� Yes � No X > 10

� Yes � No Y > 10

� Yes � No X <= 100

4

3.2 while X>100 do
X := X+1;
Y := Y-1

end

� Yes � No X > 10

� Yes � No Y > 10

� Yes � No True

� Yes � No False

3.3 while X<100 do
if X<Y then

X := 0
else

X := X + 1
fi

end

� Yes � No X > 1000

� Yes � No Y > 10

5

4 Strongest Postconditions (15 points)

Suppose we are given a command c and some precondition P. In general, there may be many
postconditions Q that make the Hoare triple {{P}} c {{Q}} valid. But it is a property of Hoare
logic that, among all these, there will be one such Q that is stronger than all the others—i.e., such
that Q ->> Q’ whenever {{P}} c {{Q’}} is valid.

For example, these are all valid triples,

{{ X=1 }} X := X + 1 {{ X=2 }}
{{ X=1 }} X := X + 1 {{ X>1 }}
{{ X=1 }} X := X + 1 {{ True }}

but X=2 is the strongest postcondition for this command and precondition.

Complete the following triples with their strongest postconditions.

4.1 {{ Y = 5 }} X := Z {{ Q }}

Answer:

Q = X = Z /\ Y = 5

4.2 {{ True }} X := X + 1 {{ Q }}

Answer:

Q = X > 0

4.3 {{ X = m /\ Y = n }} Z := X; X := Y; Y := Z {{ Q }}

Answer:

Q = X = n /\ Y = m /\ Z = m

4.4 {{ Y > 100 }} while 0 <= Y do Y := Y + 1 end {{ Q }}

Answer:

Q = False

4.5 {{ True }} if Y = 0 then X := 1 else X := Y {{ Q }}

Answer:

Q = (Y=0 /\ X=1) \/ (Y<>0 /\ X=Y)

6

5 Big-step and Small-step operational semantics (17 points)

In this problem we will work with a simple register machine with an infinite set of registers, each of
which can either be uninitialized or hold a number. It has three instructions: assignment of a nat
to a register, copying a value from one register to another, and adding the number in one register
into another register.

The evaluation function evalf below gives a precise specification of how the machine behaves.

Definition reg := nat.

Inductive rinstr : Type :=
| SAsgn (n: reg)(v: nat)
| SCopy (from to: reg)
| SAdd (from to: reg).

Definition registers := partial_map nat.

Fixpoint evalf (prog : list rinstr) (st: registers) : option registers :=
match prog with
| [] => Some st
| (SAsgn n v) :: rest => evalf rest (n |-> v; st)
| (SCopy f t) :: rest => match st f with

| Some fv => evalf rest (t |-> fv; st)
| _ => None
end

| (SAdd f t) :: rest => match st f, st t with
| Some v1, Some v2 => evalf rest (t |-> v1 + v2; st)
| _, _ => None
end

end.

For example, the program [SCopy 0 1; SAdd 1 0] first copies the contents of register 0 to register
1 and then adds register 1 back into register 0. If we run this program from a starting state where
register 0 has value 42, we get this:

evalf [SCopy 0 1; SAdd 1 0]
(0 |-> 42)

= Some (0 |-> 84; 1 |-> 42)

Notice that the evalf function returns an option—i.e., evaluation can fail. In particular, the SCopy
operation fails (returning None) if its source register is uninitialized, and the SAdd operation fails
if either register is uninitialized. For example, if we try to copy register 5 into register 6 but only
register 0 is initialized, the program will fail:

evalf [SCopy 5 6]
(0 |-> 42)

= None

Your job will be to fill in the details of two inductively defined relations—a big-step evaluation
relation and a small-step reduction relation—so that they capture the same behavior.

7

5.1 Complete this inductively defined relation for the big-step semantics. For example, the fol-
lowing should be provable using the relation you define:

bstep [SCopy 0 1; SAdd 1 0] (0 |-> 42) (0 |-> 84; 1 |-> 42).

On the other hand,

bstep [SCopy 5 6] (0 |-> 42) st'.

should not be provable for any st’.

Inductive bstep: list rinstr -> registers -> registers -> Prop :=

| BAsgn: forall ts st st' n v,
bstep ts st st' ->
bstep (SAsgn n v :: ts) st (n |-> v; st')

| BCopy: forall f t ts st st' fv tv,
bstep ts st st' ->
Some fv = st' f ->
Some tv = st' t ->
bstep (SCopy f t :: ts) st (t |-> fv; st')

| BAdd: forall ts st st' av bv a b,
bstep ts st st' ->
Some av = st' a ->
Some bv = st' b ->
bstep (SAdd a b :: ts) st (b |-> av + bv; st').

8

5.2 Complete this inductively defined relation for the small-step semantics. For example, the
following should be provable using the relation you define:

sstep
[SCopy 0 1; SAdd 1 0] (0 |-> 42)
[SAdd 1 0] (0 |-> 42; 1 |-> 42)

On the other hand,

sstep [SCopy 5 6] (0 |-> 42) st'.

should not be provable for any st’.

Inductive sstep: list rinstr -> registers -> list rinstr -> registers -> Prop :=

| SSAsgn: forall ts st n v,
sstep (SAsgn n v :: ts) st ts (n |-> v; st)

| SSCopy: forall fv tv f t ts st,
Some fv = st f ->
Some tv = st t ->
sstep (SCopy f t :: ts) st ts (t |-> fv; st)

| SSPlus: forall a1v a2v a1 a2 ts st,
Some a1v = st a1 ->
Some a2v = st a2 ->
sstep (SAdd a1 a2 :: ts) st ts (a2 |-> a1v + a2v; st).

9

6 Types (18 points)

Here is a simple set of terms, just like the ones we saw in the SmallStep chapter, except that instead
of constants and addition we now have constants (C) and subtraction (M).

Inductive tm :=
| C (n : nat)
| M (t1 t2 : tm).

The step relation for this language can be defined as in SmallStep, simply replacing addition with
subtraction:

Reserved Notation " t '-->' t' " (at level 40).

Inductive step : tm -> tm -> Prop :=
| ST_MinusConstConst : forall v1 v2,

M (C v1) (C v2) --> C (v1 - v2)
| ST_Minus1 : forall t1 t1' t2,

t1 --> t1' ->
M t1 t2 --> M t1' t2

| ST_Minus2 : forall v1 t2 t2',
t2 --> t2' ->
M (C v1) t2 --> M (C v1) t2'

where " t '-->' t' " := (step t t').

Now suppose we equip this language with the following slightly unusual type system. The set of
types has two elements

Inductive ty :=
| TZ
| TU.

(pronounced “zero” and “unknown”) and the typing relation is defined as follows:

Reserved Notation "'|-' t '\in' T" (at level 40).

Inductive has_type : tm -> ty -> Prop :=
| TC0Z :

|- C 0 \in TZ
| TC0U : forall n,

|- C n \in TU
| TMZ : forall t1 t2 T,

|- t1 \in T ->
|- t2 \in TZ ->
|- M t1 t2 \in T

| TMU : forall t1 t2,
|- t1 \in TU ->
|- t2 \in TU ->
|- M t1 t2 \in TU

where "'|-' t '\in' T" := (has_type t T).

10

6.1 Is the step relation in this language deterministic (i.e., does every term step to at most one
other term)?

� Yes � No

6.2 Is the step relation in this language total (i.e., for every t is there some t’ such that
t --> t’)?

� Yes � No

6.3 Is the step relation for well-typed terms total (i.e., for every t with |- t \in T for some T is
there some t’ such that t --> t’)?

� Yes � No

6.4 Is there a term t in this language that has no types (i.e., such that there is no type T with
|- t \in T)?

� Yes � No

If you answered Yes, give an example. If you answered No, briefly explain why not.

Every term has type TU.

6.5 Is there a term t in this language that has multiple types (i.e., such that |- t \in T1 and
|- t \in T2 where T1 and T2 are different)?

� Yes � No

If you answered Yes, give an example. If you answered No, briefly explain why not.

C 0 has both type TZ and type TU.

6.6 Can a term lose types as it steps? I.e., are there terms t1 ands t1’ and a type T such that
t1 --> t1’, where |- t1 \in T but not |- t1’ \in T?

� Yes � No

If you answered Yes, give an example. If you answered No, briefly explain why not.

Every term has type TU, so the only way a term t1 could lose a type would be if it had type TZ
but stepped to a term t1’ that did not have type TZ. The only terms of type TZ are C 0 and
terms of the form M t1 t2 where t1 has type TZ — i.e., they look like M (M (M ... (M (C
0) ...))). Stepping a term of this shape always yields another of the same shape. .

11

6.7 Can a term gain types as it steps? I.e., are there terms t1 ands t1’ and a type T such that
t1 --> t1’, where |- t1’ \in T but not |- t1 \in T?

� Yes � No

If you answered Yes, give an example. If you answered No, briefly explain why not.

M (C 2) (C 2) does not have type TZ, but it steps to C 0, which does.

12

7 [Advanced Track Only] Imp + Havoc (Informal proof) (18 points)

Recall the HImp (Imp + Havoc) language from the Equiv chapter. The definition of the big-step
evaluation relation for this language can be found in the appendix.

A command c1 is said to refine c2 if the possible ending states of c1 are a subset of the possible
ending states of c2 for every starting state. Formally:

Definition refines (c1 c2 : com) : Prop :=
forall (st st ' : state),

(st =[c1]=> st ') -> (st =[c2]=> st ').

(It is exactly the same as the usual command equivalence, cequiv, except that “iff” is replaced here
by “implies”.)

7.1 Theorem: Suppose c1 and c2 are HImp programs such that c1 refines c2. Then
while b do c1 end refines while b do c2 end.

Proof:

Suppose that st =[while b do c1 end]=> st’. We must show that
st =[while b do c2 end]=> st’.

Proceed by induction on the given derivation of
st =[while b do c1 end]=> st’.

If the last step in the derivation is a use of the E_WhileFalse rule, then
st = st’ and st b = false. The result follows immediately by E_WhileFalse.

Suppose the last in the derivation is a use of the E_WhileTrue rule, with
st b = true
st =[c1]=> st’’
st’’ =[while b do c1 end]=> st’
st’’ =[while b do c2 end]=> st’ (the IH).

Since c1 refines c2, we have st =[c1]=> st’’. Putting this together with
the IH using rule E_WhileTrue gives us st =[while b do c2 end]=> st’, as
required.

13

7.2 Consider the following two programs:

c42 =
havoc X;
X := X + 42

c5 =
havoc X;
X := X + 5

Show that c42 refines c1.

Proof:

By inspecting the evaluation rules, we see that a derivation of
st =[c42]=> st’ must consist of a use of E_Seq

st =[havoc X]=> st1
st1 =[X := X + 42]=> st’

joining a use of E_Havoc and a use of E_Asgn:

st1 = X|->n; st for some n
st’ = X|->(st1 X)+42; st

= X|->n+42; st

We can build a derivation for st =[c1]=> st’ as follows, using E_Havoc,
E_Asgn, and E_Seq:

st =[havoc X]=> (X|->n+41; st) (X|->n+41; st) =[X:=X+1]=> st’
--

st =[c1]=> st’

14

For Reference

Hoare logic
Definition hoare_triple

(P : Assertion) (c : com) (Q : Assertion) : Prop :=
forall st st',

st =[c]=> st' ->
P st ->
Q st'.

Notation "{{ P }} c {{ Q }}" :=
(hoare_triple P c Q) (at level 90, c custom com at level 99)
: hoare_spec_scope.

Axiom hoare_skip : forall P,
{{P}} skip {{P}}.

Axiom hoare_seq : forall P Q R c1 c2,
{{Q}} c2 {{R}} ->
{{P}} c1 {{Q}} ->
{{P}} c1; c2 {{R}}.

Axiom hoare_asgn : forall Q X a,
{{Q [X |-> a]}} X := a {{Q}}.

Axiom hoare_seq : forall P Q R c1 c2,
{{Q}} c2 {{R}} ->
{{P}} c1 {{Q}} ->
{{P}} c1;c2 {{R}}.

Axiom hoare_skip : forall P,
{{P}} skip {{P}}.

Axiom hoare_consequence : forall (P P' Q Q' : Assertion) c,
{{P'}} c {{Q'}} ->
P ->> P' ->
Q' ->> Q ->
{{P}} c {{Q}}.

Axiom hoare_if : forall P Q (b:bexp) c1 c2,
{{ P /\ b }} c1 {{Q}} ->
{{ P /\ ~ b}} c2 {{Q}} ->
{{P}} if b then c1 else c2 end {{Q}}.

Axiom hoare_while : forall P (b:bexp) c,
{{P /\ b}} c {{P}} ->
{{P}} while b do c end {{ P /\ ~b}}.

1

Imp + Havoc
Inductive ceval : com -> state -> state -> Prop :=

| E_Skip : forall st,
st =[skip]=> st

| E_Asgn : forall st a n x,
aeval st a = n ->
st =[x := a]=> (x !-> n ; st)

| E_Seq : forall c1 c2 st st' st'',
st =[c1]=> st' ->
st' =[c2]=> st'' ->
st =[c1 ; c2]=> st''

| E_IfTrue : forall st st' b c1 c2,
beval st b = true ->
st =[c1]=> st' ->
st =[if b then c1 else c2 end]=> st'

| E_IfFalse : forall st st' b c1 c2,
beval st b = false ->
st =[c2]=> st' ->
st =[if b then c1 else c2 end]=> st'

| E_WhileFalse : forall b st c,
beval st b = false ->
st =[while b do c end]=> st

| E_WhileTrue : forall st st' st'' b c,
beval st b = true ->
st =[c]=> st' ->
st' =[while b do c end]=> st'' ->
st =[while b do c end]=> st''

| E_Havoc : forall (st : state) (x : string) (n : nat),
st =[havoc x]=> (x !-> n ; st)

2

