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1. [Standard Track Only] Grab Bag (13 points)
Mark the following statements as True or False. The exam appendices may be useful for the Hoare logic
and STLC questions.

(a) In Coq, the type False is inhabited by the single value nil.
2 True 2 False

(b) In Coq, the term (fun P ⇒ ∼P) has type Prop.
2 True 2 False

(c) In Coq, the term (fun (P: nat→ Prop) ⇒ ∀(m:nat), P m) has type (nat → Prop) → Prop.
2 True 2 False

(d) In Coq, if we have a hypothesis H : value t, then the tactic induction H. will generate four new goals,
one for each constructor. (The definition of value is in Appendix B.)
2 True 2 False

(e) For the following Imp program,
{{ X = 10 ∧ Y = 2 ∧ Z = 0 }}
while ∼(X = 0)

X := X - Y
Z := Z + 1

end
{{ Z = 5 }}

10 = X + Y * Z ∧ Y = 2 is a valid loop invariant which can also be used to prove the given Hoare
triple.
2 True 2 False

(f) For the same Imp program given in the previous problem, X = Z * 2 is a valid loop invariant, but
cannot prove the given Hoare triple.
2 True 2 False

(g) According to cequiv, an Imp command that doesn’t terminate on any input is equivalent to every
program c.
2 True 2 False

(h) For Imp programs, if c1 is equivalent to c and c2 is also equivalent to c, then for all b, (if b then c1 else c2)

is equivalent to c.
2 True 2 False

(i) In STLC, the term (\x:Bool, if true then false else true) is a value.
2 True 2 False

(j) The usual purpose of type checking in a programming language is to prevent nontermination caused
by divergence.
2 True 2 False

(k) The term (\x:Bool, (\y:Bool, y) True) False will single step to ([x:=True] (\y:Bool, y) True).
2 True 2 False

(l) If we extend the STLC with fix, it becomes possible to implement programs that diverge (i.e., go
into an infinite loop).
2 True 2 False

(m) In the STLC extended with reference types, the store typing ST used in the typing judgment Gamma ; ST ⊢ t ∈T
maps the heap (a.k.a. memory) locations to their static types.
2 True 2 False
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2. [Standard Only] Extremely Valid Hoare Triples (12 points)

Recall that the definition of the semantics of Hoare triples is given by the following definition.
Definition hoare_triple

(P : Assertion) (c : com) (Q : Assertion) : Prop :=
∀ st st’,

st =[ c ]⇒ st’ →
P st →
Q st ’.

Appendix A contains a summary of the Imp semantics.

(a) Give a P such that for all c and all Q, {{P}} c {{Q}} is a valid Hoare triple.

P =

(b) Give a c such that for all P and all Q, {{P}} c {{Q}} is a valid Hoare triple.

c =

(c) Give a Q such that for all P and all c, {{P}} c {{Q}} is a valid Hoare triple.

Q =

PennKey: 3



3. Reverse Hoare Triples (12 points)

Consider this variant of a Hoare triple:
Definition reverse_triple

(P : Assertion) (c : com) (Q : Assertion) : Prop :=
∀ st’,

Q st’ →
∃ st, P st ∧ st =[ c ]⇒ st ’.

Such a triple is sometimes used for something called incorrectness logic, which can help find bugs. The
idea is that the post-condition Q specifies an undesirable state and the triple says that such a state is
reachable (assuming termination) from an initial condition satisfying P.

We use << P >> c << Q >> as notation for reverse_triple P c Q, and as usual, we say this triple is valid if
the proposition holds and invalid otherwise. For example, we have the following instances:

<<True >> Z := 2 <<Z = 2>> (* this triple is valid - any initial state is OK *)
<<True >> Z := 2 <<Z = 3>> (* this triple is invalid - no initial state works *)

The triples below are all invalid. Find counterexamples st’ that demonstrates this.

(a)
<< False >>
skip
<< Z = 2 >>

Counterexample: st’ =

(b)
<< True >>
Z := 2
<< True >>

Counterexample: st’ =

(c)
<< Z = 10 >>
if (X = 1)

then Z := 42
else skip

end
<< Z = 42 >>

Counterexample: st’ =
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4. Simply-typed Lambda Calculus with Pairs (22 points total)

Appendix B contains the syntax, small-step operational semantics, and typing relation for a variant of
the simply-typed lambda calculus with Bool and pair types. Unlike the variant studied in class that used
fst and snd “projection” operations, this version uses a pattern-matching operation called “split” to de-
compose a pair into its components. For instance, if p is a term that evaluates to (v1, v2) then the term
let (x,y) = p in x will evaluate (in several steps) to v1. So the complete program below steps as shown:

(\p : Bool * Bool, let (x, y) = p in x) (true, false) −→* true.

The syntax and rules presented in the appendix are completely identical to those from the course notes
except for those marked ⋆, which have to do with the new split operation. Note that the new syntax
let (x,y) = t1 in t2 binds the variables x and y for use in t2.

a. (4 points) As usual, the operational semantics depends on a notion of substitution [x:=s]t, which
is defined inductively on the structure of t. All of the cases are given in the Appendix except for those
dealing with split. Which of the following clauses should we add to the definition to properly define
substitution? (Choose one or more.)

2 [x:=s](let (y,z) = t1 in t2) = let (y,z) = [x:=s]t1 in [x:=s]t2

2 [x:=s](let (y,z) = t1 in t2) = let (y,z) = [x:=s]t1 in t2 when x=y or x=z

2 [x:=s](let (y,z) = t1 in t2) = let (y,z) = t1 in [x:=s]t2 when x=y or x=z

2 [x:=s](let (y,z) = t1 in t2) = let (y,z) = [x:=s]t1 in [x:=s]t2 when x<>y and x<>z

2 [x:=s](let (y,z) = t1 in t2) = let (y,z) = t1 in t2 when x<>y and x<>z

2 [x:=s](let (x,x) = t1 in t2) = let (s,s) = [x:=s]t1 in [x:=s]t2

b. Using the rules in the appendix, there is exactly one possible typing derivation for the following claim:
empty ⊢ \p : Bool * Bool , let (x,y) = p in x ∈ (Bool * Bool) → Bool

(i) (3 points) What form will the typing context Gamma have at the point in the derivation where the rule
T_Var is used to check the variable p? (Choose one.)
2 empty

2 y 7→Bool ; x 7→Bool ; empty

2 p 7→Bool * Bool ; empty

2 y 7→Bool ; x 7→Bool ; p 7→Bool * Bool ; empty

2 p 7→Bool * Bool ; y 7→Bool ; x 7→Bool ; empty

(ii) (3 points) What form will the typing context Gamma have at the point in the derivation where the rule
T_Var is used to check the variable x? (Choose one.)
2 empty

2 y 7→Bool ; x 7→Bool ; empty

2 p 7→Bool * Bool ; empty

2 y 7→Bool ; x 7→Bool ; p 7→Bool * Bool ; empty

2 p 7→Bool * Bool ; y 7→Bool ; x 7→Bool ; empty

PennKey: 5



c. (3 points) Recall that a term is closed if it contains no free variables, which means, for well-typed
terms, that it typechecks in an empty context. Now consider the following lemma, which would be a
useful result about the values in this language:

Lemma value_closed:
∀ t, value t → ∃ T, empty ⊢ t ∈ T.

Unfortunately, this lemma is not provable. In the space below, provide a counterexample t that refutes the
claim.

t = .

d. (3 points) Suppose we add the following rule to the step semantics of the language:

--------------- (ST_Pair3)
(s,t) --> (t,s)

Which of the following properties will fail for this version of the language?

2 progress

2 preservation

2 determinacy of evaluation

2 (they all remain valid)

e. (3 points) Suppose instead that we add the following typechecking rule:

Gamma x = T1*T2
----------------- (T_Var2)
Gamma |- x \in T1

Which of the following properties will fail for this version of the language?

2 progress

2 preservation

2 determinacy of evaluation

2 (they all remain valid)

f. (3 points) Suppose instead we add the following rule to the step semantics of the language:

value s value t
------------------ (ST_Pair3)
(s,t) --> true

Which of the following properties will fail for this version of the language?

2 progress

2 preservation

2 determinacy of evaluation

2 (they all remain valid)
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5. STLC + Boxes (36 points total)

In this problem, we consider a variant of the simply-typed lambda calculus with boxed values and a new
type “box”, written 2. The type 2 is used to describe a “boxed” value, which is a value tagged with a
run-time representation of its type. For instance, we write [true : Bool] for a boxed value true tagged with
its type Bool. Similarly, we write [\x:Bool,x : Bool → Bool] for a boxed function value \x:Bool, x tagged
with its type Bool → Bool. Importantly, all such boxes, regardless of their contents, have the same static
type, 2. So, when we “box” a value, we forget it static type.

To open a box and access its contents, we need to perform a dynamic type check that determines whether
the contents of the box have a given type, T. We introduce new syntax unbox - for - else, and write
unbox t for (\x:T, t1) else t2 for this “dynamic type test” operation. Here, t must be a term that evalu-
ates to a boxed value, [v : U] and the term after for must be (or evaluate to) a function value. Recall that
the function argument is annotated with a type T. To evaluate unbox, we check whether T = U, and, if so,
the program calls the function on v, otherwise, when the types are different, i.e. T<>U, the else branch is
taken.

For example, according to the intended operational semantics we have the following three reduction se-
quences:

(1) unbox [true:Bool]for (\x:Bool, x) else false −→(\x:Bool, x) true −→true

(1) applies the function (\x:Bool,x) to true because the type in the box, Bool, equals the type of x
(2) unbox [true:Bool]for (\f:Bool → Bool, f true) else false −→false

(2) takes the else branch because Bool <> (Bool → Bool)

(3) unbox [\x:Bool,x:Bool→ Bool]for (\f:Bool → Bool, f true) else false −→
(\f:Bool → Bool, f true) (\x:Bool, x) −→(\x:Bool, x) true −→true

(3) applies the function because the types are equal

Boxed values are thus a simple model of languages like Python that support “dynamic types” and run-time
type dispatch. In this problem we develop a type system and prove type safety for this feature. Appendix
C shows the changes to the grammars for types and new terms for this language; the omitted terms are
the usual ones for STLC with Bool as in Appendix B. (Note: for simplicity we do not include pairs in this
problem.) The type system presented in Appendices B & C satisfies all of the key lemmas for STLC.

a. (3 points) Which of the new small-step semantics rules are considered to be congruence rules?
(Mark all that apply.)

2 ST_Box 2 ST_Unbox1 2 ST_Unbox2 2 ST_UnboxEQ 2 ST_UnboxNEQ

b. (3 points) Which of the following is the correct statement of the canonical forms lemma for the 2

type?

2 ∀ t T Gamma, value t → Gamma ⊢ t ∈ 2 → ∃ v, t = [v:T]

2 ∀ t Gamma, value t → Gamma ⊢ t ∈ 2 → ∀ v, ∃ T, t = [v:T]

2 ∀ t Gamma, value t → Gamma ⊢ t ∈ 2 → ∃ v, ∃ T, t = [v:T]

2 ∀ t T Gamma v, value t → Gamma ⊢ t ∈ 2 → t = [v:T]

PennKey: 7



c. (9 points) Recall that the typing rules for STLC+2 in Appendices B & C are syntax directed, which
means that which rule applies at some step of the derivation is uniquely determined by the syntax of the
term. We say that such a rule fails if the syntax of the term matches the rule, but one or more of the
hypotheses of the rule is not satisfied.

For each of the following terms in STLC+2, indicate whether the given typing judgment is derivable using
the rules from Appendices B & C. If it is not derivable, write the name of a rule that fails for the derivation
(there might be more than one) in the space provided. We have done the first two for you.

x 7→Bool ⊢ x ∈Bool
⊠ is derivable 2 is not derivable because fails

empty ⊢ x ∈Bool

2 is derivable ⊠ is not derivable because T_Var fails

empty ⊢ [true : Bool]∈2

2 is derivable 2 is not derivable because fails

empty ⊢ \x:2, unbox x for (\b:Bool, x) else false ∈ 2 → Bool

2 is derivable 2 is not derivable because fails

empty ⊢ \x:2, unbox x for (\b:Bool, b) else (\c:Bool,false) ∈ 2 → Bool

2 is derivable 2 is not derivable because fails

d. (3 points) Suppose we change the typing rule T_Box to the one shown below, rather than the one in
the appendix—note that U appears as the annotation in the box.

Gamma ⊢ t ∈ T
- - - - - - - - - - - - - - - - - - - - - (T_Box ’)
Gamma ⊢ [t:U] ∈ 2

Which of the following properties will fail for this version of the language?

2 progress

2 preservation

2 determinacy of evaluation

2 (they all remain valid)
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e. (3 points) Suppose we instead change the typing rule T_Box to the one shown below, rather than the
one in the appendix—note that t is given type 2 in the premise.

Gamma ⊢ t ∈ 2

- - - - - - - - - - - - - - - - - - - - - (T_Box ’)
Gamma ⊢ [t:T] ∈ 2

Which of the following properties will fail for this version of the language?

2 progress

2 preservation

2 determinacy of evaluation

2 (they all remain valid)

f. (3 points) Suppose we instead change the typing rule T_Unbox to the one shown below, rather than the
one in the appendix—note that the type of t2 is just U in the premise.

Gamma ⊢ t1 ∈ 2 Gamma ⊢ t2 ∈ U Gamma ⊢ t3 ∈ U
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - (T_Unbox)

Gamma ⊢ unbox t1 for t2 else t3 ∈ U

Which of the following properties will fail for this version of the language?

2 progress

2 preservation

2 determinacy of evaluation

2 (they all remain valid)

g. (6 points) It turns out that, because STLC+2 is so simple, there is a closed value for any type T. Fill
in the blanks below to complete the function to produce such a value.

Fixpoint cv (T:ty) : tm :=

match T with

| Ty_Bool ⇒

| Ty_Arrow U V ⇒

| Ty_Box ⇒

end.

Your code above should be such that the following lemma holds:

Lemma 1 (Values of any type). ∀ T, value (cv T) ∧ empty ⊢ (cv T) ∈T

PennKey: 9



The addition of this “box” construct does not seem that powerful at first glance, because it simply lets us
write programs that test for type information at runtime. However, it is now possible to write a program
that, when run, goes into an infinite loop—something that is impossible in just STLC! (And, with a bit
more work, it is possible to implement the fix operator that implements general recursion.)

h. (3 points) To see how, first note that there is a type T such that the following judgment is derivable
according to the rules of STLC+2. (There is only one possible type for this program.)

empty ⊢ \x:2, unbox x for (\f:T, f x) else x ∈ T

What type can be filled in for T?

2 T = 2

2 T = 2→ 2

2 T = (2→ 2) → 2

2 T = 2→ 2→ 2

i. (3 points) Next, let us abbreviate the program above as m:

m = \x:2, unbox x for (\f:T, f x) else x

Then, for some type U, we also have this well-typed program: empty ⊢ m [m:T] ∈ U. Looking at the opera-
tional semantics, we have the following sequence of steps, which demonstrates the infinite loop:

m [m:T] −→ ? −→ ...−→ m [m:T]

What term should be filled in for ? above as the result of the first step of evaluation?

2 unbox m for (\f:T, f m) else m

2 unbox [m:T] for (\f:T, f [m:T]) else [m:T]

How many more steps (after this first one) does it take to reach m [m:T] for the first time?

2 1 2 2 2 3 2 4 2 5

(Note: Advanced Track students may want to continue to problem 7 before doing problem 6.)
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6. Subtyping (15 points total)

Appendix E contains the additions needed to add subtyping to the simply-typed lambda calculus defined
in Appendix B. In particular we extend the types T to include Top, add the subsumption rule T_Sub to the
type system, and define type subtyping relation S <: T as shown in the appendix. The definition of values,
substitution, and the small-step semantics remain unchanged.

a. (5 points) For each of claims below, mark the box if it is a valid subtyping relation according to the
rules in Appendix E.

2 Top <: Bool

2 (Bool, Bool) <: (Top, Bool)

2 (Bool → Top) → Bool <: (Top → Bool) → Bool.

2 (Bool → Top) → (Bool → Bool) <: (Top → Bool) → Top.

2 (Bool → Top) → (Bool → Bool) <: Top → Top

b. (5 points) Give a short example term of that is well-typed at type Bool in the empty context and such
that its typing derivation must use the rule T_Sub. Then fill in the blanks below to indicate which types are
needed for the use of T_Sub

empty ⊢ ∈ Bool

The derivation relies on an instance of T_Sub in which:

T1 =

T2 =

c. (2 points) How many types U exist such that Bool <: U (according to the rules of in the appendix?)
(choose one)

2 0 2 1 2 2 2 infinitely many

d. (3 points) We saw in class that there are various inversion lemmas related to subtyping. For instance,
we proved that ∀ U, U <: Bool → U = Bool. Here we consider the inversion of supertypes. What is the
appropriate property that can be filled in for ??? such that the following lemma is provable? (choose one)

Lemma sub_inversion_pair2 : ∀ S1 S2, S1 * S2 <: U → ???

2 U = Top

2 ∃ T1 T2, U <: T1 * T2

2 U = Top ∨ ∃T1 T2, U = T1 * T2 ∧ T1 <: S1 ∧ T2 <: S2

2 U = Top ∨ ∃T1 T2, U = T1 * T2 ∧ S1 <: T1 ∧ S2 <: T2

2 False

PennKey: 11



7. [Advanced Only] Formal Proof (25 points total)

A program translation is called type directed when it is defined by using the structure of the typing deriva-
tion for a (well-typed) term. In this problem, we prove that a simple translation preserves typing. Ap-
pendix D defines a type-directed translation on the STCL+2 language used in Problem 5. This translation
“boxes” the type Bool in a source program by replacing Bool with 2 and putting boolean constants into
boxes. The hard part is unboxing them for use in conditionals.

The translation is given in two parts. First, we define a type translation T† that converts each occurrence of
Bool in T into 2. Its definition is shown at the top of Appendix D. Then we define a type-directed translation
judgment Gamma ⊢ t ; t’ ∈T. This judgment indicates that the source term t translates to the target term
t’. The rules that define the translation (also given in Appendix D) are inductive, and they mirror the
typing rules—in particular, the context Gamma and the type T correspond to the source program (they don’t
have translated types). As such, we can think of this translation as “decorating” a typing derivation of the
program t, and it is easy to prove by straight-forward induction the following lemma:

Lemma 2 (Well-typed Source). If Gamma ⊢ t ; t’ ∈ T then Gamma ⊢ t ∈ T.

In this problem you will prove the more interesting result, namely:

Lemma 3 (Well-typed Target). If Gamma ⊢ t ; t’ ∈T then Gamma† ⊢ t’ ∈T†.

Here, Gamma† is the “translated” target context, i.e., the one such that Gamma x = Some T ↔ Gamma† x = Some (T†).

Looking carefully at the translation, you will see that it mostly the identity—most rules just apply the
translation recursively to the subterms. However, note that the type annotations in lambda abstraction and
boxes are translated. The interesting rules are TR_True and TR_False, which replace Boolean constants by
their boxed versions, and, most interestingly, the TR_If rule.

TR_If unboxes the guard expression t1’ as a Bool to perform the conditional. There are two wrinkles. First,
because the unbox operation needs a function, this translation introduces new lambda-bound variables,
which must not otherwise be used in Gamma—we write “x is fresh for Gamma” to indicate that. Second, the
unbox operation needs an “else” case, which should be the same type as the (translated) branches, but those
are of type T1†. Our translation will ensure (though we will not prove it) that the unboxing never fails, so
it doesn’t matter what term we put as the “else” case; but nevertheless, we need to provide some term,
which we write as error T1†.

a. (3 points) Let us address the second problem first. In the Problem 5, we implemented a function cv

that can produce well-typed values of any type. We can therefore take error T = cv T and prove:

Lemma 4 (Error well typed).
Gamma ⊢ error T1†: T1†

Proof. The proof follows immediately from Lemma 1 plus a use of: (choose 1)

2 Substitution preserves typing

2 Weakening

2 Preservation

2 Canonical forms
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[Advanced Only]

b. To handle the problem that the translation introduces new variables, we need to more carefully account
for how the source and target contexts are related. We therefore define the following inductive relation
⊆ †, which explains how a context Gamma relates to a translated context Gamma’.

∀ x T, Gamma x = Some T → Gamma ’ x = Some T†
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - (G_Related)

Gamma ⊆ † Gamma ’

Gamma ⊆ † Gamma ’ x is fresh for Gamma
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - (G_Fresh)

Gamma ⊆ † (x 7→ Bool ; Gamma ’)

Gamma ⊆ † Gamma ’
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - (G_Extend)

(x 7→ T ; Gamma) ⊆ † (x 7→ T† ; Gamma ’)

We have the following lemma:

Lemma 5 (Translated Contexts).
∀ Gamma Gamma’ x T, Gamma ⊆ †Gamma’ → Gamma x = Some T → Gamma’ x = Some T†.

We can finally state a strong enough lemma to prove that the translation produces well-typed terms. Fill
in the three indicated cases (we omit the other cases) to complete the proof. You may use Lemmas 4 and
5 where needed. In the inductive cases, be explicit about the form of any induction hypotheses and how
you use them, and indicate the inference rules using the names provided.

Lemma 6 (Translation well-typed).
∀ Gamma t t’ T, Gamma ⊢ t ; t’ ∈T → ∀Gamma’, Gamma ⊆ †Gamma’ → Gamma’ ⊢ t’ ∈T†.

Proof. The proof proceeds by induction on the derivation that Gamma ⊢ t ; t’ ∈ T. We consider that
cases based on the last rule applied in the derivation. Most of them follow by straightforward induction;
we consider the most interesting cases below:

Case TR_Var (4 points) Then t = x and t’ = x and we have Gamma x = Some T and, by assumption
Gamma ⊆ †Gamma’. We need to show...

Fill in here:

PennKey: 13



[Advanced Only]

Case TR_Abs (8 points) Then T = U → V for some U and V and we have t = \x:U, t1 for some x and t1. We
also have t’ = \x:U†, t1’, where we know (x 7→U; Gamma) ⊢ t1 ; t1’ ∈V. Furthermore, Gamma ⊆ †Gamma’.
We need to show...

14



[Advanced Only]

Case TR_If (10 points) Then t = if t1 then t2 else t3 for some t1, t2, and t3, where we also know
that Gamma ⊢ t1 ; t1’ ∈Bool and Gamma ⊢ t2 ; t2’ ∈U and Gamma ⊢ t3 ; t3’ ∈U for some U. Furthermore,
Gamma ⊆ †Gamma’.The translated term t’ is unbox t1’ for (\x:Bool, if x then t2’ else t3’) else (error U†),
where x is fresh for Gamma. We must show that...

PennKey: 15
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Appendix A: Imp Semantics and Hoare Logic Rules

Imp Large Step Semantics

- - - - - - - - - - - - - - - - - (E_Skip)
st =[ skip ]⇒ st

aeval st a = n
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - (E_Asgn)
st =[ x := a ]⇒ (x !→ n ; st)

st =[ c1 ]⇒ st’
st’ =[ c2 ]⇒ st’’

- - - - - - - - - - - - - - - - - - - - - (E_Seq)
st =[ c1;c2 ]⇒ st’’

beval st b = true
st =[ c1 ]⇒ st’

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - (E_IfTrue)
st =[ if b then c1 else c2 end ]⇒ st’

beval st b = false
st =[ c2 ]⇒ st’

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - (E_IfFalse)
st =[ if b then c1 else c2 end ]⇒ st’

beval st b = false
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - (E_WhileFalse)
st =[ while b do c end ]⇒ st

beval st b = true
st =[ c ]⇒ st’

st’ =[ while b do c end ]⇒ st’’
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - (E_WhileTrue)
st =[ while b do c end ]⇒ st’’

Definition cequiv (c1 c2 : com) : Prop :=
∀ (st st’ : state),

(st =[ c1 ]⇒ st ’) ↔ (st =[ c2 ]⇒ st ’).

Imp Hoare Logic Rules

- - - - - - - - - - - - - - - - - - - - - - - - - - - (hoare_asgn)
{{Q [X 7→ a]}} X:=a {{Q}}

- - - - - - - - - - - - - - - - - - - - (hoare_skip)
{{ P }} skip {{ P }}

{{ P }} c1 {{ Q }}
{{ Q }} c2 {{ R }}

- - - - - - - - - - - - - - - - - - - - - - (hoare_seq)
{{ P }} c1;c2 {{ R }}

{{P ∧ b}} c1 {{Q}}
{{P ∧ ∼ b}} c2 {{Q}}

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - (hoare_if)
{{P}} if b then c1 else c2 end {{Q}}

{{P ∧ b}} c {{P}}
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - (hoare_while)
{{P}} while b do c end {{P ∧ ∼ b}}

{{P’}} c {{Q’}}
P ↠ P’
Q’ ↠ Q

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - (hoare_consequence)
{{P}} c {{Q}}
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Appendix B: Simply-typed Lambda Calculus

This appendix contains the syntax, small-step operational semantics, and typing relation for a variant of the
simply-typed lambda calculus with Bool and pair types. Unlike the variant studied in class (which used fst

and snd “projection” operations), this version uses a pattern-matching operation called “split” to decompose a
product into its components. The syntax and rules presented here are completely identical to those from the
course notes except for those marked ⋆, which have to do with the new split operation.

Syntax and Types

t ::= Terms
| x variable
| \x:T,t abstraction
| t t application
| true constant true
| false constant false
| if t then t else t conditional
| (t, t) pair
| let (x,y) = t in t split ⋆

T ::= Types
| T → T arrow type
| Bool Boolean type
| T * T product type

Inductive value : tm → Prop :=
| v_abs : ∀ x T2 t1, value <{\x:T2, t1}>
| v_true : value <{ true }>
| v_false : value <{ false }>
| v_pair : ∀ v1 v2, value v1 → value v2 → value <{(v1, v2)}>.

Substitution

Note: this definition is incomplete.
[x:=s]x = s
[x:=s]y = y if x <> y
[x:=s](\x:T, t) = \x:T, t
[x:=s](\y:T, t) = \y:T, [x:=s]t if x <> y
[x:=s](t1 t2) = ([x:=s]t1) ([x:=s]t2)
[x:=s]true = true
[x:=s]false = false
[x:=s](if t1 then t2 else t3) =

if [x:=s]t1 then [x:=s]t2 else [x:=s]t3
[x:=s](t1, t2) = ([x:=s]t1, [x:=s]t2)
[x:=s](let (y,z) = t1 in t2) = ⋆

// omitted
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STLC: small step operational semantics

value v2
- - - - - - - - - - - - - - - - - - - - - - - - - - - (ST_AppAbs)
(\x:T2,t1) v2 −→ [x:=v2]t1

t1 −→ t1’
- - - - - - - - - - - - - - - - (ST_App1)
t1 t2 −→ t1’ t2

value v1
t2 −→ t2’

- - - - - - - - - - - - - - - - (ST_App2)
v1 t2 −→ v1 t2’

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - (ST_IfTrue)
(if true then t1 else t2) −→ t1

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - (ST_IfFalse)
(if false then t1 else t2) −→ t2

t1 −→ t1’
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - (ST_If)
(if t1 then t2 else t3) −→ (if t1’ then t2 else t3)

t1 −→ t1’
- - - - - - - - - - - - - - - - - - - - (ST_Pair1)
(t1,t2) −→ (t1’,t2)

t2 −→ t2’
- - - - - - - - - - - - - - - - - - - - (ST_Pair2)
(v1,t2) −→ (v1,t2 ’)

t1 −→ t1’ (ST_Split1)⋆
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
let (x,y) = t1 in t2 −→ let (x,y) = t1’ in t2

value v1 value v2
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - (ST_Split2)⋆
let (x,y) = (v1,v2) in t2 −→ [x:=v1][y:=v2]t2
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STLC: typing relation

Gamma x = T1
- - - - - - - - - - - - - - - - - (T_Var)
Gamma ⊢ x ∈ T1

x 7→ T2 ; Gamma ⊢ t1 ∈ T1
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - (T_Abs)
Gamma ⊢ \x:T2,t1 ∈ T2→ T1

Gamma ⊢ t1 ∈ T2→ T1
Gamma ⊢ t2 ∈ T2

- - - - - - - - - - - - - - - - - - - - - - (T_App)
Gamma ⊢ t1 t2 ∈ T1

- - - - - - - - - - - - - - - - - - - - - (T_True)
Gamma ⊢ true ∈ Bool

- - - - - - - - - - - - - - - - - - - - - (T_False)
Gamma ⊢ false ∈ Bool

Gamma ⊢ t1 ∈ Bool Gamma ⊢ t2 ∈ T1 Gamma ⊢ t3 ∈ T1
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - (T_If)

Gamma ⊢ if t1 then t2 else t3 ∈ T1

Gamma ⊢ t1 ∈ T1 Gamma ⊢ t2 ∈ T2
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - (T_Pair)

Gamma ⊢ (t1,t2) ∈ T1*T2

Gamma ⊢ t1 ∈ T1 * T2 y 7→ T2; x 7→ T1; Gamma ⊢ t2 ∈ T2
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - (T_Split)⋆

Gamma ⊢ let (x,y) = t1 in t2 ∈ T2

Key Lemmas for STLC

Lemma canonical_forms_bool : ∀ t,
empty ⊢ t ∈ Bool → value t → t = <{true}> ∨ t = <{false}>.

Lemma canonical_forms_arrow : ∀ t,
empty ⊢ t ∈ (T1 → T2) → value t → ∃ x t1, t = <{\x : T1, t1}>.

Lemma substitution_preserves_typing : ∀ Gamma x U t v T,
(x 7→ U ; Gamma) ⊢ t ∈ T →
empty ⊢ v ∈ U →
Gamma ⊢ [x:=v]t ∈ T.

Theorem progress : ∀ t T,
empty ⊢ t ∈ T →

value t ∨ ∃ t’, t −→ t’.

Theorem preservation : ∀ t t’ T,
empty ⊢ t ∈ T →

t −→ t’ →
empty ⊢ t’ ∈ T.

Definition deterministic {X : Type} (R : relation X) :=
∀ x y1 y2 : X, R x y1 → R x y2 → y1 = y2.

Theorem step_deterministic:
deterministic step.
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Appendix C: Box Types

Changes to base STLC

T ::= Types t ::= Terms
| T → T arrow types | ...
| Bool Boolean type | [ t : T ] box
| 2 box type | unbox t for t else t unbox

Substitution and Values

... (* usual rules , plus: *)
[x:=s] [ t : T ] = [ [x:=s] t : T ]
[x:=s](unbox t1 for t2 else t3) = unbox [x:=s]t1 for [x:=s]t2 else [x:=s]t3

Inductive value : tm → Prop :=
| v_abs : ∀ x T2 t1, value <{\x:T2, t1}>
| v_true : value <{ true }>
| v_false : value <{ false }>
| v_box : ∀ v T, value v → value <{ [ v : T ] }>.

Small-step semantics

t1 −→ t1’
- - - - - - - - - - - - - - - - - - - - - - - (ST_Box)

[ t1 : T ] −→ [ t1’ : T ]

t1 −→ t1’
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - (ST_Unbox1)
unbox t1 for t2 else t3 −→ unbox t1’ for t2 else t3

value v1
t2 −→ t2’

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - (ST_Unbox2)
unbox v1 for t2 else t3 −→ unbox v1 for t2’ else t3

value v
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - (ST_UnboxEQ)
unbox [ v : T ] for (\x:T, t1) else t2 −→ (\x:T, t1) v

value v
T <> U

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - (ST_UnboxNEQ)
unbox [ v : U ] for (\x:T, t1) else t2 −→ t2

Typing Rules

Gamma ⊢ t ∈ T
- - - - - - - - - - - - - - - - - - - - - - - - - - (T_Box)
Gamma ⊢ [ t : T ] ∈ 2

Gamma ⊢ t1 ∈ 2 Gamma ⊢ t2 ∈ (T → U) Gamma ⊢ t3 ∈ U
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - (T_Unbox)

Gamma ⊢ unbox t1 for t2 else t3 ∈ U
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Appendix D: [ADVANCED ONLY] - Box Translation

TYPE TRANSLATION :
(Bool)† = 2

(T1 → T2)† = (T1)† → (T2)†
2† = 2

TYPE - DIRECTED TERM TRANSLATION:

Gamma x = T1
- - - - - - - - - - - - - - - - - - - - - - (TR_Var)
Gamma ⊢ x ; x ∈ T1

x 7→ T2 ; Gamma ⊢ t1 ; t1’ ∈ T1
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - (TR_Abs)

Gamma ⊢ \x:T2,t1 ; \x:T2 †, t1’ ∈ T2→ T1

Gamma ⊢ t1 ; t1’ ∈ T2→ T1
Gamma ⊢ t2 ; t2’ ∈ T2

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - (TR_App)
Gamma ⊢ t1 t2 ; t1’ t2’ ∈ T1

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - (TR_True)
Gamma ⊢ true ; [true:Bool] ∈ Bool

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - (TR_False)
Gamma ⊢ false ; [false:Bool] ∈ Bool

Gamma ⊢ t1 ; t1’ ∈ Bool
Gamma ⊢ t2 ; t2’ ∈ T1
Gamma ⊢ t3 ; t3’ ∈ T1 (x fresh for Gamma)

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - (TR_If)
Gamma ⊢ if t1 then t2 else t3 ;

unbox t1’ for (\x:Bool , if x then t2’ else t3 ’)
else (error T1 †)

Gamma ⊢ t ; t’ ∈ T
- - - - - - - - - - - - - - - - - - - - - - - - - - (TR_Box)

Gamma ⊢ [ t’ : T† ] ∈ 2

Gamma ⊢ t1 ; t1’ ∈ 2

Gamma ⊢ t2 ; t2’ ∈ (T → U)
Gamma ⊢ t3 ; t3’ ∈ U

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - (TR_Unbox)
Gamma ⊢ unbox t1 for t2 else t3 ;

unbox t1’ for t2’ else t3’ ∈ U
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Appendix E: Subtyping

Additions to the type system:

T := Types
| T → T
| Bool
| T * T
| Top ( added )

Gamma ⊢ t1 ∈ T1 T1 <: T2
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - (T_Sub)

Gamma ⊢ t1 ∈ T2

Subtyping relation:

S <: U U <: T
- - - - - - - - - - - - - - - - (S_Trans)

S <: T

- - - - - - (S_Refl)
T <: T

- - - - - - - - (S_Top)
S <: Top

S1 <: T1 S2 <: T2
- - - - - - - - - - - - - - - - - - - - (S_Prod)
S1 * S2 <: T1 * T2

T1 <: S1 S2 <: T2
- - - - - - - - - - - - - - - - - - - - (S_Arrow)
S1 → S2 <: T1 → T2
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