
CIS 5000 Midterm 11 October 2022

SOLUTIONS

1



1. Typing 1 (9 points) (11
2 points each)

What is the type of each of the following Coq expressions? If it has no type, write “ill-typed.”

(a) true

bool

(b) False

Prop

(c) 4 = 4

Prop

(d) fun (X:Prop) => X -> X

Prop -> Prop

(e) fun (X:Type) (f: X -> (X -> X)) (x:X) => f x

forall X : Type, (X -> X -> X) -> X -> X -> X

(f) forall (X:Prop), X \/ (X -> False)

Prop

PennKey: 2



2. Typing 2 (9 points) (11
2 points each)

Write a Coq expression for each of the following types. Write “empty” if there are no expressions of that
type.

(a) Prop

True

(b) nat -> Prop

fun x => x = x

(c) 101 <= 100

empty

(d) forall (X : Type), X -> (X -> X)

fun (X:Type) (x:X) (y:X) => x

(e) (bool -> bool) -> bool

fun (f : bool -> bool) => f true

(f) forall (X Y : Type), X -> Y

empty

PennKey: 3



3. Tactics! (18 points) (3 points each)

Fill in the partially completed proof states such that the requirement(s) are satisfied.

Note: Many solutions are possible.

(a) Proof state:
m, n: nat

H: m = 1 \/ n = 2

-----------------------------------

(* IGNORE THIS LINE *)

Requirement:
(1) destruct H. will generate two subgoals

(b) Proof state:
m, n: nat

H: m = 1 /\ n = 2

-----------------------------------

(* IGNORE THIS LINE *)

Requirement:
(1) destruct H. will generate one subgoal

(c) Proof state:
H: False

-----------------------------------

(* IGNORE THIS LINE *)

Requirement:
(1) destruct H. will generate zero subgoals

PennKey: 4



(d) Proof state:
m, n: nat

H: S m = S n

-----------------------------------

m = n

Requirements:
(1) injection H as Hmn. apply Hmn. will solve the goal
(2) f_equal. apply H. will not

(e) Proof state:
n: nat

H: n = 3

-----------------------------------

n + 1 = 4

Requirements:
(1) rewrite H. reflexivity. will solve the goal
(2) apply H. will not

(f) Proof state:
P: Prop

Q: Prop

H: P /\ Q

-----------------------------------

P /\ Q

Requirements:
(1) apply H. will solve the goal
(2) rewrite H. reflexivity. will not

PennKey: 5



4. [Standard Track Only] Functional Programming (20 points total)

We define a binary tree as the following:
Inductive tree (V : Type) : Type :=
| E
| T (l : tree V) (v : V) (r : tree V).
Arguments E {V}.
Arguments T {V}.

As an example, we can create a simple binary tree with values of type nat :
Example ex_tree : tree nat :=

(T (T E 1 E) 2 (T E 1 E)).
(* which represents the tree

2
/ \

1 1
/ \ / \

E E E E *)

(a) (8 points) We want to define some useful operations over binary trees. The map operation on a
list applies a function to every element and replaces each element with the result after applying the
function. We want to implement tree_map as the analagous function over binary trees. For example,
the following should be easily provable:

Example tree_map_ex1 :
tree_map (fun v ⇒ v + 1) ex_tree =

T (T E 2 E) 3 (T E 2 E).

Fill in the missing parts of the tree_map implementation.
Fixpoint tree_map {V W: Type} (f : V → W) (t : tree V) : (tree W) :=

match t with
| E ⇒ E
| T tl v tr ⇒ T (tree_map f tl) (f v) (tree_map f tr)
end.

PennKey: 6



[Standard Track Only]
(b) (12 points) Now let’s define a fold operation over binary trees. Similar to the fold operation for

lists, fold for trees should intuitively insert some operation between all elements of a tree. For a list,
fold plus [1;2;3] 0 meant 1 + (2 + (3 + 0)), but now for a tree we will have that
tree_fold plus3 (T (T E 1 E) 2 E) 0 = (plus3 (plus3 0 1 0) 2 0) = 3

where we define plus3 as a ternary operator:
Definition plus3 (x y z : nat) : nat := x + y + z.

The implementation of tree_fold should make the following example easily provable, where ex_tree

is the example tree from the previous page.
Example tree_fold_ex1 :

tree_fold plus3 0 ex_tree = 4.

Implement the missing parts of the tree_fold function.
Fixpoint tree_fold {V W : Type} (f : W → V → W → W) (a0 : W) (t : tree V) : W :=

match t with
| E ⇒ a0
| T tl v tr ⇒ f (tree_fold f a0 tl) v (tree_fold f a0 tr)
end.

PennKey: 7



5. Defining Inductive Propositions (16 points total)

This problem asks you to define inductive propositions that work with the type tree defined below. (This
is the same definition as in problem 5.)

Inductive tree (V : Type) : Type :=
| E
| T (l : tree V) (v : V) (r : tree V).
Arguments E {V}.
Arguments T {V}.

(a) (4 points) Complete the following definition of an inductive proposition is_empty such that is_empty t

is provable if and only if t = E.
Inductive is_empty {V : Type} : tree V → Prop :=
| is_empty_E : is_empty E.

(b) (12 points) Complete the following definition of an inductive proposition tree_ex such that tree_ex P t

is provable if and only if the tree t contains at least one node (T tl v tr) such that P v holds.
Inductive tree_ex {V} (P:V → Prop) : tree V → Prop :=
| te_T : ∀ tl tr v, P v → tree_ex P (T tl v tr)
| te_left : ∀ tl tr v, tree_ex P tl → tree_ex P (T tl v tr)
| te_right : ∀ tl tr v, tree_ex P tr → tree_ex P (T tl v tr)
.

PennKey: 8



6. Working with Inductive Propositions (18 points total)

Consider the following inductively defined proposition. Intuitively, subseq l1 l2 asserts that list l1 is a
subsequence of the list l2, that is, that all of the elements of the list l1 appear (not necessarily contiguously)
in the same order within l2.

Inductive subseq {A:Type} : list A → list A → Prop :=
| s_nil : ∀ (ys: list A), subseq [] ys

| s_cons : ∀ (x:A) (xs:list A) (ys:list A),
subseq xs ys → subseq (x::xs) (x::ys)

| s_skip : ∀ (xs:list A) (y:A) (ys:list A),
subseq xs ys → subseq xs (y::ys).

For example, we would be able to prove the following:
Example example : subseq [1;2] [3;1;4;2].

But we would not be able to prove this one (because 1 does not follow 2):
Example example_fail : subseq [2;1] [3;1;4;2]. (* Not provable! *)

(a) (4 points) Which of the following assertions are provable using the definition of subseq given above?
(Mark all that apply.)

⊠ subseq [] [1]

2 subseq [1] []

⊠ subseq [1;3] [1;1;3]

2 subseq [1;1;3] [1;3]

(b) (6 points) In the blanks below, write two distinct terms, both of type subseq [2] [1;2;2]:

Example ans1 : subseq [2] [1;2;2] :=
s_skip [2] 1 [2;2] (s_cons 2 [] [2] (s_nil [2])).

Example ans2 : subseq [2] [1;2;2] :=
s_skip [2] 1 [2;2] (s_skip [2] 2 [2] (s_cons 2 [] [] (s_nil []))).

PennKey: 9



(c) (4 points) Consider the following lemma that is provable from the definitions above:
Lemma subseq_app_r : ∀ (A:Type) (xs ys1 ys2 : list A),

subseq xs ys1 →
subseq xs (ys1 ++ ys2).

Mark the checkboxes below to indicate the structure of the proof:

Lemma subseq_app_r is most easily proved by induction on:

2 xs 2 ys1 2 ys2 ⊠ the evidence for subseq xs ys1

because the evidence constructed for subseq xs (ys1 ++ ys2) will...

2 use the s_nil and s_cons constructors to mirror the structure of that list.

⊠ follow exactly the same structure as for subseq xs ys1, except that in every step the part of the evi-
dence corresponding to ys1 has ys2 appended.

2 follow exactly the same structure as for subseq xs ys1, except that in every step the part of the evi-
dence corresponding to xs has ys2 appended.

2 repeatedly use the s_skip constructor to skip over the list used for induction and then use the fact that
subseq xs ys1.

(d) (4 points) Consider the following lemma that is provable from the definitions above:
Lemma subseq_app_l : ∀ (A:Type) (xs ys1 ys2 : list A),

subseq xs ys2 →
subseq xs (ys1 ++ ys2).

Mark the checkboxes below to indicate the structure of the proof:

Lemma subseq_app_l is most easily proved by induction on:

2 xs ⊠ ys1 2 ys2 2 the evidence for subseq xs ys2

because the evidence constructed for subseq xs (ys1 ++ ys2) will...

2 use the s_nil and s_cons constructors to mirror the structure of that list.

2 follow exactly the same structure as for subseq xs ys2, except that in every step the part of the evi-
dence corresponding to ys2 has ys1 appended to the front.

2 follow exactly the same structure as for subseq xs ys2, except that in every step the part of the evi-
dence corresponding to ys2 has xs appended to the front.

⊠ repeatedly use the s_skip constructor to skip over the list used for induction and then use the fact that
subseq xs ys2.

PennKey: 10



7. [Advanced Track Only] Informal Proof (20 points)

This problem uses the same definition of subseq as in the previous question. We replicate the definition
here for your convenience. Intuitively, subseq l1 l2 asserts that list l1 is a subsequence of the list l2, that
is, that all of the elements of the list l1 appear (not necessarily contiguously) in the same order within l2.

Inductive subseq {A:Type} : list A → list A → Prop :=
| s_nil : ∀ (ys: list A), subseq [] ys

| s_cons : ∀ (x:A) (xs:list A) (ys:list A),
subseq xs ys → subseq (x::xs) (x::ys)

| s_skip : ∀ (xs:list A) (y:A) (ys:list A),
subseq xs ys → subseq xs (y::ys).

Using these definitions, it is possible to prove the following two lemmas:
Lemma subseq_app_r : ∀ (A:Type) (xs ys1 ys2 : list A),

subseq xs ys1 →
subseq xs (ys1 ++ ys2).

Lemma subseq_app_l : ∀ (A:Type) (xs ys1 ys2 : list A),
subseq xs ys2 →
subseq xs (ys1 ++ ys2).

On the following page, write a careful informal proof of the following fact. The proof uses induction, and
we have given you a “skeleton” of the main structure to help you get started. You may use one or both of
the lemmas above in your proof. Make sure to state the induction hypothesis explicitly.

Lemma subseq_app : ∀ (A:Type) (xs ys ws zs : list A),
subseq xs ys →
subseq ws zs →
subseq (xs ++ ws) (ys ++ zs).

Proof

Suppose subseq xs ys and subseq ws zs. We want to show subseq (xs ++ ws) (ys ++ zs). We proceed by
induction on the structure of the evidence for the first hypothesis, and consider the following cases:

• Case s_nil: The constructor was s_nil and we have xs = []. Then it suffices to show
subseq ([] ++ ws) (ys ++ zs), but that follows by using lemma subseq_app_l with the second hypoth-
esis, taking ys1 = ys.

• Case s_cons: The last constructors used was s_cons and we have xs = x::xs’ and ys = x::ys’ for some
x,xs’, and ys’. From the induction hypothesis, we have subseq (xs’++ ws) (ys’++ zs). Observe that
xs ++ ws = (x :: xs’) ++ ws = x :: (xs’++ ws) and similarly for the ys ++ zs, so the result follows
by applying s_cons to the IH.

• Case s_skip: The last constructors used was s_cons and we have ys = y::ys’ for some y and ys’.
From the induction hypothesis, we have subseq (xs’++ ws) (ys’++ zs). Observe that we have
ys ++ zs = (y :: ys’) ++ zs = y :: (ys’++ zs), so the result follows by applying s_skip to the IH.

PennKey: 11


