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1. [Standard Track Only] Behavioral Equivalence (14 points)

Recall the notion of program equivalence, cequiv, from the Equiv chapter. Two Imp commands c1 and c2
are equivalent if for every starting state st, either c1 and c2 both diverge or both terminate in the same final
state st’. For the following pairs of Imp programs mark True if the pair of Imp programs are equivalent.
If they’re not equivalent, mark False.

(a) X := Y; Y := X Y := X; X := Y

2 True ⊠ False

(b) skip while false do skip end

⊠ True 2 False

(c)

X := 10;
Y := 0;
while X <> Y do

Y := Y + 1
end

Y := X

2 True ⊠ False

(d)

X := 10;
Y := 0;
while X <> Y do

skip
end

skip

2 True ⊠ False

(e) Suppose that c1 is equivalent to c2, then it follows that the following two programs are equivalent for
any b:

if b then
c1

else
c2

if ∼b then
c1

else
c2

⊠ True 2 False

(f) Suppose that c1 is equivalent to c2, then for every definition of c3, the following programs are equiv-
alent:

c1 ; c3 c2 ; c3

⊠ True 2 False

(g) Suppose that c1 is not equivalent to c2, then it is not possible to define c3 such that the following
programs are equivalent:

c1 ; c3 c2 ; c3

2 True ⊠ False
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2. [Advanced Track Only] Behavioral Equivalence (14 points total)

Suppose we wanted to add a command print a to Imp, which is intended to model printing the (arith-
metic) expression a to the terminal. This problem explores the ramifications of that choice on behavioral
equivalence. The state of the Imp semantics will now include a log of the natural numbers output on the
console, represented as a list.

For the large step semantics, the rules are the same as in Appendix A except that they also propagate the
log unchanged. For example, the modified rule for skip and the new rule for print are shown below:

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - (E_Skip)
st / log =[ skip ]⇒ st / log

aeval st a = n
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - (E_Print)
st / log =[ print a ]⇒ st / (n::log)

(a) (4 points) If we straightforwardly modify the statement of behavioral equivalence to use this definition,
we end up with the following:

Definition cequiv (c1 c2 : com) : Prop :=
∀ (st st’ : state) (log log ’ : list nat),

(st / log =[ c1 ]⇒ st’ / log ’) ↔ (st / log =[ c2 ]⇒ st’ / log ’).

Suppose that the terminal output becomes visible to a user immediately after the print command executes.
Briefly describe why this definition of program equivalence is not very satisfactory if we intend it to model
what would be seen by a user who is watching the terminal. Give a specific example of two programs
whose behavior would be mischaracterized if we use this definition.

This definition makes it so that two programs that diverge but produce different outputs are considered to
be the same. For example, the following two programs would be considered the same, even though they
produce different outputs:

while true to while true do
print 1 print 2

end end
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[Advanced Track Only]

It is harder to fix the problems with cequiv hinted at above than you might expect. One idea is to move to
a small-step semantics for modeling this situation. As with the usual rules for small-step Imp, there is no
rule for stepping skip, but we would add these rules for print:

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - (C_Print)
print n / st / log −→ skip / st / (n::log)

a −→a a’
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - (C_PrintStep)
print a / st / log −→ print a’ / st / log

The other rules propagate the log unchanged. For example, we have these rules for While and IfTrue:
(C_While)

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
while b do c end / st / log −→ if b then c ; while b do c end else skip end / st / log

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - (C_IfTrue)
if true then c1 else c2 end / st / log −→ c1 / st / log

Recall that −→* is the reflexive, transitive closure of −→, given by multi step (see Appendix B). Consider
the following first try at a definition for behavioral equivalence for this situation.

Definition cequiv_first_try (c1 c2 : com) : Prop :=
∀ st log st’ log ’,
∀ c1’, (c1 / st / log −→* c1’ / st’ / log ’) →

∃ c2’, (c2 / st / log −→* c2’ / st’ / log ’)

Informally, the definition above says that if c1 can be run from starting state st with log to reach a state
st’ and output log’, then so can c2. Unfortunately, this still isn’t quite right, for several reasons.

(b) (2 points) For one thing, one of the desired properties of an behavioral equivalence fails to hold.
Which property fails for the above definition? (Mark one)

2 Reflexivity

⊠ Symmetry

2 Transitivity

2 Congruence

In an attempt to fix the problem above, we might try this definition instead:
Definition cequiv_second_try (c1 c2 : com) : Prop :=

∀ st log st’ log ’,
∀ c1 ’, (c1 / st / log −→* c1’ / st’ / log ’) →

∃ c2’, (c2 / st / log −→* c2’ / st’ / log ’)
∧

∀ c2 ’, (c2 / st / log −→* c2’ / st’ / log ’) →
∃ c1’, (c1 / st / log −→* c1’ / st’ / log ’)

This definition does satisfy all of the properties from part (b), but it is also too coarse—it equates too
many commands. Ironically, unlike for the large-step version of cequiv in part (a), the presence of print

isn’t the problem—this definition does correctly distinguish programs that print different outputs. How-
ever, sometimes this definition claims that two commands without print are equal when cequiv correctly
distinguishes them.
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[Advanced Track Only]

In particular, the commands c1 = skip and c2 = while true do skip end, which are inequivalent according
to cequiv are incorrectly equated by the proposed cequiv_second_try.

(c) (4 points) One direction of the proof of equivalence using cequiv_second_try is pretty easy. Below,
we give an informal proof of that claim with three choices left for you to determine. Mark the boxes to
complete the proof.

Lemma Undesired Equivalence Left-to-Right: ∀ st log st’ log’,

∀ c1’, (skip / st / log −→* c1’ / st’ / log’) →

∃ c2’, (while true do skip end / st / log −→* c2’ / st’ / log’)

Proof. Let st, log, st’, and log’ be given. Suppose we have c1’ such that H: (skip / st / log) −→* c1’ / st’ / log’.
We must show that ∃ c2’, (while true do skip end) / st / log −→* c2’ / st’ / log’.

We proceed by induction on the derivation of H via the −→* relation, and there are two cases:

• In the base case of multi_refl, we have: c1’ = ( ⊠ skip or 2 while true do skip end),
and st = st’ and log = log’. We can instantiate the existential by choosing
c2’ = ( 2 skip or ⊠ while true do skip end)
and we conclude by observing that in zero steps: c2 / st / log −→* c2’ / st / log

• In the second case, we have that there exists c1’’, st1’’ and log’’ such that
H1 : skip / st / log −→c1’’ / st’’ / log’’ and that H2 : c1’’ / st’’ / log ’’ −→* c1’ / st’ / log’

but we can conclude by observing (choose one):
2 that H2 directly yields the result thanks to the induction hypothesis
⊠ that H1 contradicts the definition of step, since skip does not step, so this case is vacuously true.

(d) (4 points) Proving the other direction needed to show that skip and while true do skip end are equated
by cequiv_second_try is quite challenging. The statement of the needed property is:

Lemma Undesired Equivalence Right-to-Left: ∀ st log st’ log’,

∀ c2’, (while true do skip end / st / log −→* c2’ / st’ / log’) →

∃ c1’, (skip / st / log −→* c1’ / st’ / log’)

To prove this, a very helpful lemma is:

Lemma No Outputs ∀ st st’ c

while true do skip end / st / log −→* c / st’ / log’ → st = st’ ∧ log = log’.

In the space below, give a short informal proof of the Right-to-Left lemma, you should explicitly mention
how you use the No Outputs lemma.

Proof. From the assumptions and the No Outputs lemma, we have that st = st’ and log = log’. We need
to choose c1’ such that skip / st / log −→* c1’ / st / log, but that follows by picking c1’ = skip and
using multi_refl.
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3. Hoare Logic (18 points total)

Appendix A contains a summary of the standard Hoare Logic rules for Imp.

Adding assertions for proving properties about programs

(a) (8 points) Prove that, beginning in a state where if X is m, Y is n, and some suitable condition P holds,
the following program swaps the value of two variables. Choose the (correct) condition P from the list
below and then fill in correct assertions to complete the decorated Hoare proof. (Hint: recall that Imp
semantics implement arithmetic over natural numbers, so, e.g., 2 - 3 = 0.)

2 P is True

⊠ P is m <= n

2 P is n <= m

{{ X = m ∧ Y = n ∧ P }} ↠

{{ (Y - X) + (Y - (Y - X)) = n ∧ (Y - (Y - X)) = m

}}
X := Y - X

{{X + (Y - X) = n ∧ (Y - X) = m

}}
Y := Y - X

{{ X + Y = n ∧ Y = m

}}
X := X + Y

{{ X = n ∧ Y = m }}

(b) (10 points) Complete the Hoare-logic decorations to prove that the following program will always
assign 1 to X.

{{ True }}
X := 0

{{ X = 0 }}
if X = 0 then

{{ X = 0 ∧ X = 0 }} ↠
{{ 1 = 1 }}
X := 1
{{ X = 1 }}

else
{{ X = 0 ∧ ∼(X = 0 ) }} ↠
{{ 2 = 1 }}
X := 2
{{ X = 1 }}

end
{{ X = 1 }} ↠
{{ X = 1 }}

PennKey: 6



4. Loop Invariants (15 points total)

Recall that an assertion P is a valid loop invariant for while b do c end if {{ P ∧ b }} c {{ P }} holds.

(a) (5 points) Mark which of the following are valid loop invariants for the following program. (Choose
all that apply)

while X > 0 do
X := X - 1

end

⊠ True

⊠ False

2 X = 1

2 X > 0

⊠ X ≥ 0

(b) (5 points) Mark which of the following are valid loop invariants AND can be used to prove the
following Hoare triple. (Choose all that apply)

{{ even n ∧ even m ∧ n > m}}
X := n
Y := m
while X > Y do

X := X - 1
Y := Y + 1

end
{{ X * 2 = n + m }}

2 True

2 X + Y = n + m

2 X * 2 = X + Y

2 (X ≥ Y) ∧ X * 2 = X + Y

⊠ (X ≥ Y) ∧ X + Y = n + m

(c) (5 points) Mark which of the following are loop invariants (for the outer loop) AND can be used to
prove the following Hoare triple. Recall that exp 2 n calculates 2n. (Choose all that apply)

{{ exp 2 k = n }}
X := n
Z := 0
while X > 1 do

Y := 0
while Y < X do

X := X - 1
Y := Y + 1

end
Z := Z + 1

end
{{ exp 2 Z = n }}

2 True

2 False

2 (exp 2 Z) * X = n

⊠ ((X ≥ 1) ∧ (exp 2 Z) * X = n)

2 ((n ≥ 1) ∧ (exp 2 Z) * X = n)
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5. Imp Semantics (11 points)

Suppose that we extend Imp with a new command, swap X Y, that atomically swaps the contents of the two
variables X and Y. For example, after running the following program, the value of X will be 5000 and Y will
be 17

X := 17;
Y := 5000;
swap X Y;

(a) (3 points) To define the semantics for this new command, we need to add a new rule to the ceval

predicate.
Inductive ceval : com → state → state → Prop :=

| E_Skip : ∀ st,
st =[ skip ]⇒ st

| E_Asgn : ∀ st a n x,
aeval st a = n →
st =[ x := a ]⇒ (x !→ n ; st)

| (* other cases are standard and omitted *)

???.

Recall that x !→ v ; m updates the map m so that identifier x maps to v. Which of the following clauses
should be placed in the hole ??? above to properly define the semantics for swap? (Choose one)

2
| E_Swap : ∀ st x y,

(x !→ st y; st) =[ swap x y ]⇒ (y !→ st x ; st)

⊠
| E_Swap : ∀ st x y,

st =[ swap x y ]⇒ (x !→ st y ; y !→ st x ; st)

2
| E_Swap : ∀ st x y,

(x !→ st y ; y !→ st x ; st) =[ swap x y ]⇒ st

2
| E_Swap : ∀ st x y n m,

st =[ swap x y ]⇒ (x !→ n ; y !→ m ; st)

(b) (8 points) Assuming that the swap X Y instruction’s semantics are implemented correctly, which of the
following are valid statements about Hoare triples? (Mark all that are correct.)

⊠ ∀ m,n, {{ X = m /\ Y = n }} swap X Y {{ X = n /\ Y = m }}

⊠ {{ fun st => Q [X |-> st Y] [Y |-> st X] st }} swap X Y {{ Q }}

⊠ {{ P }} swap X Y {{ fun st => P [X |-> st Y][Y |-> st X] st }}

⊠ {{ X = Y }} swap X Y {{ Y = X }}
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6. Small Step Semantics (20 points total)

In this problem, we will work with a simple language that only has Push and Pop instructions. These
instructions will be used to manipulate a stack, which is just a list of natural numbers.

Inductive instr : Type :=
| Push : nat → instr
| Pop : nat → instr.

Definition stack := list nat.

The evaluation function eval below gives a precise specification of the behavior.
Fixpoint eval (prog : list instr) (st : stack) : option stack :=

match prog with
| [] ⇒ Some st
| i :: rest ⇒

match i with
| Push n ⇒ eval rest (n :: st)
| Pop n ⇒

match st with
| [] ⇒ None
| n’ :: st’ ⇒ if n =? n’ then eval rest st’ else None
end

end
end.

For example,
eval [Push 1; Pop 1; Push 2] [] = Some [2].

The eval function returns an option because evaluation can fail. Specifically, this happens when we try to
Pop a value from the top of the stack that is not there. For example,

eval [Pop 2] [1] = None.

(a) (8 points) Complete this inductively defined relation for the small-step semantics so that it captures
the same behavior as eval. For example, the following should be provable using your relation:

step ([Push 1; Pop 1; Push 2] , []) ([Pop 1; Push 2] , [1]).

On the other hand, these should not be provable for any (st : stack) or (next : list instr * stack):
step ([] , st) next

step ([Pop 2] , [1]) next

Inductive step : (list instr * stack) → (list instr * stack) → Prop :=
| SPush : ∀ (n : nat) (l : list instr) (st : stack),

step (Push n :: l, st) (l, n :: st)
| SPop : ∀ (n : nat) (l : list instr) (st : stack),

step (Pop n :: l, n :: st) (l, st).
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(b) (12 points) The answers to this problem will be graded relative to a correct definition of the step

relation (based on the provided specification) and not relative to your answer to part (a). As a result,
you should be able to reason about this problem regardless of whether you solved part (a).

Consider these two new step rules. First,
| SIgnore : ∀ (i : instr) (l : list instr) (st : stack),

step (i :: l, st) (l, st)

This allows us to non-deterministically ignore an instruction, so we could prove things like
step ([Push 1] , []) ([] , []).

Second,
| SRepeat : ∀ (i : instr) (l : list instr) (st st’ : stack),

step (i :: l, st) (l, st ’) →
step (i :: l, st) (i :: l, st ’).

This allows us to non-deterministically repeat an instruction, so we could prove things like
step ([Push 1] , []) ([Push 1] , [1]).

We define our values for this language as follows:
Inductive value : (list instr * stack) → Prop :=
| v_empty : ∀ st, value ([], st).

Which completions make true statements? Please consult Appendix B for the definitions, which are
taken from the Smallstep.v file. (Mark all that apply, 1 point for each box.)

i. normalizing is provable...
⊠ for the original step
⊠ for step + SIgnore

⊠ for step + SRepeat

⊠ for step + SIgnore + SRepeat

ii. value_is_nf is provable...
⊠ for the original step
⊠ for step + SIgnore

⊠ for step + SRepeat

⊠ for step + SIgnore + SRepeat

iii. nf_is_value is provable...
2 for the original step
⊠ for step + SIgnore

2 for step + SRepeat

⊠ for step + SIgnore + SRepeat
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7. Types, Preservation, Progress (12 points total)

This problem refers to the combined language of Bools and Nats from the Types.v file. For your reference,
this language defined in Appendix C, along with the statements of the various lemmas used below.

(a) (6 points) Suppose we add this new typing rule to the system (keeping all the others unchanged):
- - - - - - - - - - - - - - - - - (TrueNat_added)
⊢ true ∈ Nat

Which of the following properties no longer hold for this language? (Mark all that apply; if they all remain
true, mark that box instead.)

2 bool_canonical

⊠ nat_canonical

⊠ progress

2 preservation

2 step_deterministic

2 They all remain true

(b) (6 points) Suppose we instead add this new stepping rule to the system (keeping all the others un-
changed):

- - - - - - - - - - - - - - - - - - (ST_Pred0_added)
⊢ pred 0 −→ true

Which of the following properties no longer hold for this language? (Mark all that apply; if they all remain
true, mark that box instead.)

2 bool_canonical

2 nat_canonical

2 progress

⊠ preservation

⊠ step_deterministic

2 They all remain true
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Appendix A: Imp Semantics and Hoare Logic Rules

Imp Large Step Semantics

- - - - - - - - - - - - - - - - - (E_Skip)
st =[ skip ]⇒ st

aeval st a = n
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - (E_Asgn)
st =[ x := a ]⇒ (x !→ n ; st)

st =[ c1 ]⇒ st’
st’ =[ c2 ]⇒ st’’

- - - - - - - - - - - - - - - - - - - - - (E_Seq)
st =[ c1;c2 ]⇒ st’’

beval st b = true
st =[ c1 ]⇒ st’

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - (E_IfTrue)
st =[ if b then c1 else c2 end ]⇒ st’

beval st b = false
st =[ c2 ]⇒ st’

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - (E_IfFalse)
st =[ if b then c1 else c2 end ]⇒ st’

beval st b = false
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - (E_WhileFalse)
st =[ while b do c end ]⇒ st

beval st b = true
st =[ c ]⇒ st’

st’ =[ while b do c end ]⇒ st’’
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - (E_WhileTrue)
st =[ while b do c end ]⇒ st’’

Imp Hoare Logic Rules

- - - - - - - - - - - - - - - - - - - - - - - - - - - (hoare_asgn)
{{Q [X ⊢ > a]}} X:=a {{Q}}

- - - - - - - - - - - - - - - - - - - - (hoare_skip)
{{ P }} skip {{ P }}

{{ P }} c1 {{ Q }}
{{ Q }} c2 {{ R }}

- - - - - - - - - - - - - - - - - - - - - - (hoare_seq)
{{ P }} c1;c2 {{ R }}

{{P ∧ b}} c1 {{Q}}
{{P ∧ ∼ b}} c2 {{Q}}

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - (hoare_if)
{{P}} if b then c1 else c2 end {{Q}}

{{P ∧ b}} c {{P}}
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - (hoare_while)
{{P}} while b do c end {{P ∧ ∼ b}}

{{P’}} c {{Q’}}
P → > P’
Q’ → > Q

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - (hoare_consequence)
{{P}} c {{Q}}
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Appendix B: Normal Form and Value Definitions

Given value and step relations defined elsewhere, we have the following additional definitions.
Definition normal_form (t : list instr * stack) : Prop :=

∼ ∃ t’, step t t’.

Lemma normalizing : ∀ t,
∃ t’, (multi step) t t’ ∧ normal_form t’.

Lemma value_is_nf : ∀ v,
value v → normal_form v.

Lemma nf_is_value : ∀ nf,
normal_form nf → value nf.

Inductive multi {X : Type} (R : relation X) : relation X :=
| multi_refl : ∀ (x : X), multi R x x
| multi_step : ∀ (x y z : X),

R x y →
multi R y z →
multi R x z.
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Appendix C: Combined Bool and Nat terms

This Appendix has the definitions of the terms, small-step semantics, and typing rules for the language from
Types.v.

Syntax and Values

t ::= true bvalue v ↔ (v = true ∨ v = false)
| false
| if t then t else t nvalue n ↔ (n = 0 ∨ (∃ m, n = succ m ∧ nvalue m)
| 0
| succ t
| pred t
| iszero t

Small-step operational semantics

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - (ST_IfTrue)
if true then t1 else t2 −→ t1

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - (ST_IfFalse)
if false then t1 else t2 −→ t2

t1 −→ t1’
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - (ST_If)
if t1 then t2 else t3 −→ if t1’ then t2 else t3

t1 −→ t1’
- - - - - - - - - - - - - - - - - - - - (ST_Succ)
succ t1 −→ succ t1’

- - - - - - - - - - - - (ST_Pred0)
pred 0 −→ 0

numeric value v
- - - - - - - - - - - - - - - - - - - (ST_PredSucc)
pred (succ v) −→ v

t1 −→ t1’
- - - - - - - - - - - - - - - - - - - - (ST_Pred)
pred t1 −→ pred t1’

- - - - - - - - - - - - - - - - - (ST_IsZero0)
iszero 0 −→ true

numeric value v
- - - - - - - - - - - - - - - - - - - - - - - - - (ST_IszeroSucc)
iszero (succ v) −→ false

t1 −→ t1’
- - - - - - - - - - - - - - - - - - - - - - - - (ST_Iszero)
iszero t1 −→ iszero t1’
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Type System

- - - - - - - - - - - - - - - (T_True)
⊢ true ∈ Bool

- - - - - - - - - - - - - - - (T_False)
⊢ false ∈ Bool

⊢ t1 ∈ Bool ⊢ t2 ∈ T ⊢ t3 ∈ T
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - (T_If)

⊢ if t1 then t2 else t3 ∈ T

- - - - - - - - - - - - - - (T_0)
⊢ 0 ∈ Nat

⊢ t1 ∈ Nat
- - - - - - - - - - - - - - - - - (T_Succ)
⊢ succ t1 ∈ Nat

⊢ t1 ∈ Nat
- - - - - - - - - - - - - - - - - (T_Pred)
⊢ pred t1 ∈ Nat

⊢ t1 ∈ Nat
- - - - - - - - - - - - - - - - - - - - (T_Iszero)

⊢ iszero t1 ∈ Bool

Key Lemmas

Lemma bool_canonical : ∀ t,
⊢ t ∈ Bool → value t → bvalue t.

Lemma nat_canonical : ∀ t,
⊢ t ∈ Nat → value t → nvalue t.

Theorem progress : ∀ t T,
⊢ t ∈ T →
value t ∨ ∃ t’, t −→ t’.

Theorem preservation : ∀ t t’ T,
⊢ t ∈ T →
t −→ t’ →
⊢ t’ ∈ T.

Definition deterministic {X : Type} (R : relation X) :=
∀ x y1 y2 : X, R x y1 → R x y2 → y1 = y2.

Theorem step_deterministic:
deterministic step.
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