
CIS 5000: Software Foundations Final Exam

December 19, 2023

Name (printed) or WPE Code:

Username (PennKey login id) if not taking for WPE:

Choose a random 4-digit number:

My signature below certifies that I have complied with the University of Pennsylvania’s Code of
Academic Integrity in completing this examination.

Signature: Date:

Directions:

• This exam contains both standard and advanced-track questions. Questions with no
annotation are for both tracks. Questions for just one of the tracks are marked “Standard
Track Only” or “Advanced Track Only.”

Do not waste time or confuse the graders by answering questions intended for the other
track.

• Before beginning the exam, please write your random 4-digit number (not your name
or PennKey!) at the top of each even-numbered page, so that we can find things if a
staple fails.

Mark the box of the track you are following.

Standard Advanced (or WPE-I)

Check here if you are retaking the class from an earlier semester

1 [Standard Track Only] Miscellaneous (14 points)

1.1 The type True in Coq has a single constructor I with no arguments.

� True � False

1.2 The axiom of functional extensionality states that

forall (A B : Type) (f g : A -> B), f = g -> forall x : A, f x = g x

� True � False

1.3 It is possible to prove the following theorem without induction and without referring to facts
from the Coq standard library.

Theorem mul_0_r : forall n: nat, n * 0 = 0

� True � False

1.4 For Imp programs, if c is equivalent to if b then c1 else c2 for all b, then it must be that
c1 and c2 are equivalent.

� True � False

1.5 If c1 and c2 are equivalent and c1 terminates on all inputs, then c2 terminates on all inputs.
� True � False

1.6 If c1 and c2 both diverge from the same set of starting states, then they are equivalent.

� True � False

1.7 If the Hoare triple {{P}} c {{Q}} is valid, then c is guaranteed to terminate when started in
any state satisfying P.

� True � False

1.8 If there exists a Hoare triple that two programs both satisfy, then the two programs must be
equivalent.

� True � False

1

1.9 What is the type of the Coq term (fun b:bool => b = false)?
� Prop
� bool
� bool -> bool
� bool -> Prop
� Prop -> Prop
� something else
� ill typed

1.10 What is the type of the Coq term (fun b:bool => if b then false else true)?
� Prop
� bool
� bool -> bool
� bool -> Prop
� Prop -> Prop
� something else
� ill typed

1.11 What is the type of the Coq term (forall b:bool, b = false)?
� Prop
� bool
� bool -> bool
� bool -> Prop
� forall b:bool, b = false
� something else
� ill typed

1.12 What is the type of the Coq term ((fun P:Prop => P) (true = false))?
� Prop
� bool
� bool -> Prop
� bool -> False
� Prop -> False
� something else
� ill typed

2

2 Semantic Styles (8 points)

Briefly explain the difference between big-step and small-step styles of operational semantics. What
are the advantages of the small-step style compared to the big-step style?

3

3 Representing Multisets (16 points)

Recall that a multiset (also known as a bag) is similar to a set, i.e., the order of its elements does
not matter, but it allows elements to appear many times.

In the homework for the Lists.v chapter, we represented a multiset as a list of natural numbers. We
will return to the list representation later; for now, consider an alternative functional representation:

Definition func_multiset := nat -> nat.

That is, we represent multisets as functions from nat to nat. The input is the element, and the
output is the number of times the element appears in the multiset. For example, the multiset
containing the elements 1, 2, 2, and 3 would be represented as a function that returns 1 when called
with argument 1; 2 for argument 2; 1 for argument 3; and 0 for any other argument.

3.1 Fill in the definition of a function count, which takes in an element e and a multiset fm and
returns the number of times e appears in fm.

Definition count (e : nat) (fm : func_multiset) : nat :=

3.2 Fill in the definition of singleton, which takes in an element e and returns a multiset con-
taining just the element e.

Definition singleton (e : nat) : func_multiset :=

3.3 Fill in the definition of sum, which takes in two multisets a, b and returns a multiset that
contains all of the elements of a and b. For example, if a contains elements 1 and 2 and b
contains elements 2 and 3, then sum a b should contain elements 1, 2, 2, and 3.

Definition sum (a b : func_multiset) : func_multiset:=

3.4 Fill in the definition of is_empty, which takes in a multiset fm and returns a proposition
stating that fm contains no elements.

Definition is_empty (fm : func_multiset) : Prop :=

4

Next, we return to the list representation of multisets from Lists.v:

Definition list_multiset := list nat.

That is, a multiset is represented as a list of nats, where each number may appear in the list
zero, one, or several times.

For example, the empty list represents the multiset containing no elements, while the list
[2, 1, 3, 2] represents the multiset containing elements 1, 2, 2, and 3.

3.5 Fill in the definition of this conversion function from a list-represented multiset to a function-
represented multiset. The input and output multisets should contain exactly the same ele-
ments. Use the functions defined above as appropriate.

Fixpoint list_to_func (lm : list_multiset) : func_multiset :=

3.6 Finally, let us consider whether we can write a conversion function in the other direction,
from the function representation to a list representation. For which of the following types A
can we write a Fixpoint that converts a func_multiset whose elements are of type A to a
list_multiset whose elements are of type A? Choose all that apply.

� nat

� bool

� nat * nat

� bool * bool

� list nat

� list bool

� none of the above

5

4 Imp with Subroutines (15 points)

In this problem, we will explore operational semantics, behavioral equivalence, and Hoare-style
reasoning for an Imp-like language extended with named, parameterless subroutines.

Syntax:

Here is the syntax of commands in this language:

c := skip
| x := a
| c ; c
| if b then c else c end
| call r

Some points to note:

• Subroutines do not take parameters or return results: they communicate with their callers
through the variables in the global store.

• There is no explicit return command: a subroutine returns to its caller by “falling off the end.”

• We’ve dropped while loops from the command syntax for brevity. If needed, loops can be
simulated using subroutines.

We define a program to be an Imp command (the “top-level program”) plus a collection of named
subroutines (the “code context”), each of which is just a command. To invoke subroutines, we add
a new form of command, written call r, to the syntax of commands.

For example, if we define the code context R1 like this

Definition R1 : code_context :=
(
A |->

<{ X := 1; call B; Z := 3 }>;
B |->

<{ Y := 2 }>
).

and the top-level program consists of the context R1 plus the top-level command call A, written
(R1, call A), then the effect of running this program will be to set the variable X to 1, Y to 2, and
Z to 3.

6

Big-step semantics:

The operational semantics of arithmetic and boolean expressions remains unchanged from plain
Imp.

The big-step reduction judgement for commands is written R |-- st =[c]=> st' and pronounced
“In the code context R, the command c started in state st halts in state st'.”

Most of the rules are basically identical to those in standard Imp (just adding the R parameter
everywhere for the code context). The only new rule is the last one, which says that the command
call r is executed by looking up r in R and executing the command that we find.

Inductive ceval : code_context -> com -> state -> state -> Prop :=
(* All these rules are unchanged except for adding "R |--" *)
| E_Skip : forall R st,

R |-- st =[skip]=> st
| E_Asgn : forall R st a n x,

aeval st a = n ->
R |-- st =[x := a]=> (x !-> n ; st)

| E_Seq : forall R c1 c2 st st' st'',
R |-- st =[c1]=> st' ->
R |-- st' =[c2]=> st'' ->
R |-- st =[c1 ; c2]=> st''

| E_IfTrue : forall R st st' b c1 c2,
beval st b = true ->
R |-- st =[c1]=> st' ->
R |-- st =[if b then c1 else c2 end]=> st'

| E_IfFalse : forall R st st' b c1 c2,
beval st b = false ->
R |-- st =[c2]=> st' ->
R |-- st =[if b then c1 else c2 end]=> st'

(* This is the only new one *)
| E_Call : forall R st st' r c,

R r = Some c ->
R |-- st =[c]=> st' ->
R |-- st =[call r]=> st'

where "R |-- st =[c]=> st'" := (ceval R c st st').

4.1 According to the definition above, what happens if we execute the top-level command call A
in the empty code context? (One or two sentences.)

7

Program Equivalence

The definition of program equivalence extends smoothly from plain Imp to Imp with Subrou-
tines.

Definition: A program (R1,c1) is equivalent to (R2,c2) if, for any pair of states st and st',
we have R1 |-- st =[c1]=> st' iff R2 |-- st =[c2]=> st'.

Now, consider the following code context:
Definition R : code_context :=

(
A |-> <{ X := 1; Y := 2 }>;
B |-> <{ Y := 2; call C }>;
C |-> <{ X := 1 }>;

D |-> <{ X := X - 1; call D }>;
E |-> <{ X := 0 }>;

F |-> <{ if X > 0 then X := X - 1; call F else skip end }>;
G |-> <{ X := 0 }>;

H |-> <{ if X > 0 then X := X - 1; call H; X := X + 1 else skip end }>;
I |-> <{ skip }>;

J |-> <{ if X > 0 then X := X - 1; call J; X := X + 1 else skip end }>;
K |-> <{ if X > 0 then X := X - 1; X := X + 1; call K else skip end }>

).

For each of the following pairs of programs, mark the appropriate box to indicate whether
they are equivalent or inequivalent. If you choose “inequivalent,” provide an example of a
starting state on which they behave differently.

4.2 (R, call A) and (R, call B)

� equivalent � inequivalent on st =

4.3 (R, call D) and (R, call E)

� equivalent � inequivalent on st =

4.4 (R, call F) and (R, call G)

� equivalent � inequivalent on st =

4.5 (R, call H) and (R, call I)

� equivalent � inequivalent on st =

4.6 (R, call J) and (R, call K)

� equivalent � inequivalent on st =

8

Hoare Logic with Subroutines

Finallt, we can extend the usual notion of Hoare triples to include a code context:

Definition valid_hoare_quad
(R : code_context) (P : Assertion) (c : com) (Q : Assertion) :

Prop := forall st st', R |-- st =[c]=> st' -> P st -> Q st'.

Notation "R |-- {{ P }} c {{ Q }}" :=
(valid_hoare_quad R P c Q) (at level 40, c custom com at level 99, R

constr, P at level 99, Q at level 99) : hoare_spec_scope.

All the existing Hoare Logic rules generalize to the new setting just by adding R |-- to each
Hoare triple.

Now, what rule should we introduce for the new call r command? One natural possibility is
to simply to look up the command associated with r and say that any pre- and post-conditions
we can establish for that command will also hold for call r:

R r = Some c R |-- {{ P }} c {{ Q }}

R |-- {{ P }} call r {{ Q }}

4.7 Is this rule unsound? I.e., are there any invalid triples that we can prove with this rule? Briefly
(one sentence) explain why or why not.

4.8 Is this rule incomplete? I.e., are there any valid triples that we cannot prove with this rule?
Briefly (one sentence) explain why or why not.

9

5 Hoare Logic (10 points)

For this problem, we return to the standard Imp and Hoare triple definitions, with no subroutines.

Suppose we are given a command c and a desired postcondition Q. In general, there may be many
preconditions P that make the Hoare triple {{P}} c {{Q}} valid. But it is a property of Hoare logic
that, among all these, there will be one such P that is weaker than all the others—i.e., such that
P' ->> P whenever {{P'}} c {{Q}} is valid.

For example, these are all valid triples

{{ False }} X := Y {{ X = 1 }}
{{ X = 1 /\ Y = 1 }} X := Y {{ X = 1 }}
{{ Y = 1 }} X := Y {{ X = 1 }}

but Y = 1 is the weakest precondition for this command and postcondition.

Select the weakest precondition P for each of the following triples. If the weakest precondition is
not listed, then select “Some other precondition.”

5.1 {{ P }} Z := X; X := Y; Y := Z {{ Z = X }}

� True

� False

� Z = Y

� Z = X

� X = Y

� Some other precondition

5.2 {{ P }} while X = 1 do Y := Y + 1 end {{ False }}

� True

� False

� X = 1

� X <> 1

� Some other precondition

5.3 {{ P }} if X <> Y then X := Y else skip {{ X <> Y }}

� True

� False

� X = Y

� X <> Y

� Some other precondition

10

5.4 {{ P }} while X < Y do X := X + 1 end {{ X <> Y }}

� True

� False

� X <> Y

� X >= Y

� Some other precondition

5.5 {{ P }}
X := 0;
while X < Y do

X := X + 1;
if X = m then X := 0 else skip

end
{{ X = Y }}

� True

� False

� Y > m

� Y = 0

� Y = m

� Some other precondition

11

6 STLC with Error (16 points)

In this problem, we will take the simply typed lambda-calculus (with unit and no other extensions,
see page 2 of the appendix) and add a simple form of exceptions. In particular, we add to the
definition of terms a new constructor

| error

and we propagate errors throughout a term by adding two new rules for applications to the small-
step operational semantics:

------------------ (ST_Error1)
error t2 --> error

value v1
------------------ (ST_Error2)
v1 error --> error

Note that, even though error is a normal form, we do not define it to be a value (we will explore
why shortly). Instead, we modify progress to allow normal forms to either be a value or error.

Instructions for the first three subproblems: For each starting term t below, give the term t’ such
that t -->* t’ and t’ is a normal form. Select which (single-)step rules are used to step to t',
if any. For example, ((\x:Unit, x) unit) unit multi-steps to unit unit via rules ST_App1 and
ST_AppAbs.

6.1 The term t =

(error error) error

multi-steps to t' =

...via rules

� ST_App1

� ST_App2

� ST_AppAbs

� ST_Error1

� ST_Error2

� none (t itself is a normal form)

12

6.2 The term t =

(\x:Unit, x x) error

multi-steps to t' =

...via rules

� ST_App1

� ST_App2

� ST_AppAbs

� ST_Error1

� ST_Error2

� none (t itself is a normal form)

6.3 The term t =

(\x:Unit, (unit unit) (x error)) unit

multi-steps to t' =

...via rules

� ST_App1

� ST_App2

� ST_AppAbs

� ST_Error1

� ST_Error2

� none (t itself is a normal form)

6.4 If we incorrectly defined error to be a value, we would break determinism.

To demonstrate this, provide a term t and two distinct terms t1 and t2 such that if value
error held, then we would have t --> t1 and t --> t2.

t =

t1 =

t2 =

13

Next, we add to the typing relation the rule
-------------------- (T_Error)
Gamma |- error \in T

which says that error can have any type.

Instructions for the next three subproblems: For each term t, select all types T such that t can
have type T under the empty context, or select “none of the above” if appropriate.

6.5 The term t =

error error

can have type(s)

� Unit

� Unit -> Unit

� Unit -> (Unit -> Unit)

� (Unit -> Unit) -> Unit

� none of the above

6.6 The term t =

\x:Unit, error

can have type(s)

� Unit

� Unit -> Unit

� Unit -> (Unit -> Unit)

� (Unit -> Unit) -> Unit

� none of the above

6.7 The term t =

error (\x:Unit, x x)

can have type(s)

� Unit

� Unit -> Unit

� Unit -> (Unit -> Unit)

� (Unit -> Unit) -> Unit

� none of the above

14

6.8 If we had incorrectly written the typing rule for error so that error only has type Unit, i.e.

----------------------- (T_Error)
Gamma |- error \in Unit

we would break preservation.

To construct a counterexample, provide a term f such that

(\x:Unit->Unit, x) (f error)

has type Unit -> Unit but the entire term steps to something ill-typed.

f =

15

7 Subtyping (14 points)

The setting for this problem is the simply typed lambda-calculus with booleans, products, and
subtyping (see pages 1 to 5 of the appendix).

7.1 In this language, is there a type with infinitely many subtypes (i.e., is there some type T such
that the set of all S with S <: T is infinite?)

� Yes � No
If yes, give an example:

7.2 In this language, is there a type with infinitely many supertypes (i.e., is there some type S
such that the set of all T with S <: T is infinite?)

� Yes � No
If yes, give an example:

7.3 Suppose t = (\x:Top * Bool, x.snd). Check all the types T such that |-- t \in T.

Select “Some other type(s),” even if you have already selected some options above it, if the
term has more types than what are listed. Select “Not typeable” if none of the choices apply.

� (Top * Bool) -> Top

� Top -> Bool

� ((Bool * Bool) * Bool) -> Top

� (Top * Top) -> Top

� Some other type(s)

� Not typeable

7.4 Suppose t = (\x:Bool->Top, true). Check all the types T such that |-- t \in T.

Select “Some other type(s),” even if you have already selected some options above it, if the
term has more types than what are listed. Select “Not typeable” if none of the choices apply.

� (Bool -> Top) -> Bool

� Top -> Top

� (Bool -> (Top -> Bool)) -> Top

� (Top -> (Bool -> Top)) -> Top

� Some other type(s)

� Not typeable

16

7.5 Let S stand for the set of types T such that empty |-- \x:Bool->Bool, x \in T. What is the
smallest element of S (i.e., which element of S is a subtype of all the others)?

� Top

� Top -> Top

� (Top -> Bool) -> Bool -> Bool

� (Bool -> Bool) -> Bool -> Bool

� (Bool -> Top) -> Bool -> Bool

� Top -> Bool -> Bool

� Top -> Bool -> Bool

� Some other type is the smallest one in S

� S has no smallest element

7.6 Now let S stand for the set of types T such that empty |-- \x:T, x \in T->T. What is the
smallest element of S?

� Top

� Bool

� Top -> Top

� Top -> Bool

� Bool -> Top

� Some other type is the smallest one in S

� S has no smallest element

7.7 What is the largest element of S?

� Top

� Bool

� Top -> Top

� Top -> Bool

� Bool -> Top

� Some other type is the largest one in S

� S has no largest element.

17

8 Progress, Preservation, and Determinism for STLC with Subtyping (15 points)

(The syntax, operational semantics, and typing rules for the simply-typed lambda calculus with
booleans, products, and subtyping can be found on pages 1 to 5 in the appendix.)

For each variant below, indicate which properties of the original system remain true or become false
in the presence of this rule. (The definitions of the properties are on page 8 in the appendix.)

8.1 Suppose that we add the following reduction rule:

t2 --> t2’
---------------- (Funny_App)
t1 t2 --> t1 t2’

• Progress � Remains true � Becomes false

• Preservation � Remains true � Becomes false

• Determinism � Remains true � Becomes false

8.2 Suppose instead that we add the following reduction rule:

------------------------------------ (Funny_If)
(if false then t1 else t2) --> false

• Progress � Remains true � Becomes false

• Preservation � Remains true � Becomes false

• Determinism � Remains true � Becomes false

8.3 Suppose instead that we add the following typing rule:

Gamma |-- t \in T1 -> T2
------------------------- (Funny_Lambda_Type)
Gamma |-- t \in Top -> T2

• Progress � Remains true � Becomes false

• Preservation � Remains true � Becomes false

• Determinism � Remains true � Becomes false

18

8.4 Suppose instead that we add the following typing rule:

----------------------- (Funny_Prod_Arrow)
Top * Top <: Top -> Top

• Progress � Remains true � Becomes false

• Preservation � Remains true � Becomes false

• Determinism � Remains true � Becomes false

8.5 Suppose instead that we add the following subtyping rule:

-------- (Funny_Top_Subtype)
Top <: S

• Progress � Remains true � Becomes false

• Preservation � Remains true � Becomes false

• Determinism � Remains true � Becomes false

19

9 [Advanced Track Only] Informal Proof (14 points)

The simply typed lambda-calculus with booleans, products, and subtyping is summarized on pages 1
to 5 of the appendix.

9.1 The subtype relation in this language has the following structural property:

Lemma (TTop): If Top <: U, then U = Top.

Give a careful informal proof of this Lemma. If your proof uses induction, make sure to state
the induction hypothesis explicitly.

20

9.2 Similarly, we have:

Lemma (TArrow):
If S1 -> S2 <: U then U = Top or U has the form U1 -> U2 for some U1 and U2.

and:

Lemma (TPair):
If S1 * S2 <: U then U = Top or U has the form U1 * U2 for some U1 and U2.

(You do not need to prove these lemmas.)

It follows that, if U is a supertype of both an arrow type and a pair type, then U = Top.

Theorem: If S1 -> S2 <: U and T1 * T2 <: U, then U = Top.

Give a careful informal proof of this theorem. Your proof may, if you like, use the TTop,
TArrow, and/or TPair lemmas. If it uses induction, make sure to state the induction hypothesis
explicitly.

21

10 References (12 points) The simply typed lambda-calculus with references is summarized
on pages 6 to 7 of the appendix.

Recall from References.v that the preservation theorem for this calculus is stated like this...

Theorem preservation_theorem_with_references := forall ST t t' T st st',
empty ; ST |-- t \in T ->
store_well_typed ST st ->
t / st --> t' / st' ->
exists ST',

extends ST' ST /\
empty ; ST' |-- t' \in T /\
store_well_typed ST' st'.

where:

• st and st' are stores (maps from locations to values);

• ST and ST' are store typings (maps from store locations to types);

• empty ; ST |-- t \in T means that the closed term t has type T under the store typing ST;

• t / st --> t' / st'means that, starting with the store st, the term t steps to t' and changes
the store to st';

• store_well_typed ST st means that the contents of each location in the store st has the type
associated with this location in ST; and

• extends ST' ST means that the domain of ST is a subset of that of ST' and that they agree on
the types of common locations.

By contrast, the preservation theorem for the plain STLC without references looks quite a bit
simpler:

Theorem preservation : forall t t' T,
empty |-- t \in T ->
t --> t' ->
empty |-- t' \in T.

Briefly identify the differences between the two versions of the theorem, and explain why they are
needed.

(Use the next page for your answer.)

22

(Use this page for your answer.)

23

For Reference
Simply Typed Lambda Calculus

Syntax and rules for STLC with no extensions. (Base types will be added later.)
Syntax:

T ::= T -> T arrow type

t ::= x variable
| \x:T,t abstraction
| t t application

Values:

v ::= \x:T,t

Substitution:

[x:=s]x = s
[x:=s]y = y if x <> y
[x:=s](\x:T, t) = \x:T, t
[x:=s](\y:T, t) = \y:T, [x:=s]t if x <> y
[x:=s](t1 t2) = ([x:=s]t1) ([x:=s]t2)

Small-step operational semantics:

value v2
--------------------------- (ST_AppAbs)
(\x:T2,t1) v2 --> [x:=v2]t1

t1 --> t1'
---------------- (ST_App1)
t1 t2 --> t1' t2

value v1
t2 --> t2'

---------------- (ST_App2)
v1 t2 --> v1 t2'

Typing:

Gamma x = T1
----------------- (T_Var)
Gamma |-- x \in T1

x |-> T2 ; Gamma |-- t1 \in T1
----------------------------- (T_Abs)
Gamma |-- \x:T2,t1 \in T2->T1

Gamma |-- t1 \in T2->T1
Gamma |-- t2 \in T2

---------------------- (T_App)
Gamma |-- t1 t2 \in T1

1

STLC + Unit
Syntax:

T ::= ...
| Unit unit type

t ::= ...
| unit unit value

Values:

v ::= ...
| unit

Substitution:

...
[x:=s]unit = unit

Small-step operational semantics:

(no new rules)

Typing:

----------------------- (T_Unit)
Gamma |-- unit \in Unit

2

STLC + Booleans + Products + Subtyping

Booleans
Syntax:

T ::= ...
| Bool boolean type

t ::= ...
| true true
| false false
| if t then t else t conditional

Values:

v ::= ...
| true
| false

Substitution:

...
[x:=s]true = true
[x:=s]false = false
[x:=s](if t1 then t2 else t3) = if [x:=s]t1 then [x:=s]t2 else [x:=s]t3

Small-step operational semantics:

-------------------------------- (ST_IfTrue)
(if true then t1 else t2) --> t1

--------------------------------- (ST_IfFalse)
(if false then t1 else t2) --> t2

t1 --> t1'
-- (ST_If)
(if t1 then t2 else t3) --> (if t1' then t2 else t3)

Typing:

--------------------- (T_True)
Gamma |-- true \in Bool

--------------------- (T_False)
Gamma |-- false \in Bool

Gamma |-- t1 \in Bool Gamma |-- t2 \in T1 Gamma |-- t3 \in T1
-- (T_If)

Gamma |-- if t1 then t2 else t3 \in T1

3

Products
Syntax:

T ::= ...
| T * T product type

t ::= ...
| (t,t) pair
| t.fst first projection
| t.snd second projection

Values:

v ::= ...
| (v,v)

Substitution:

...
[x:=s](t1, t2) = ([x:=s] t1, [x:=s] t2)
[x:=s]t.fst = ([x:=s] t).fst
[x:=s]t.snd = ([x:=s] t).snd

Small-step operational semantics:

t1 --> t1'
-------------------- (ST_Pair1)
(t1,t2) --> (t1',t2)

t2 --> t2'
-------------------- (ST_Pair2)
(v1,t2) --> (v1,t2')

t1 --> t1'
------------------ (ST_Fst1)
t1.fst --> t1'.fst

------------------ (ST_FstPair)
(v1,v2).fst --> v1

t1 --> t1'
------------------ (ST_Snd1)
t1.snd --> t1'.snd

------------------ (ST_SndPair)
(v1,v2).snd --> v2

4

Typing:

Gamma |-- t1 \in T1 Gamma |-- t2 \in T2
--- (T_Pair)

Gamma |-- (t1,t2) \in T1*T2

Gamma |-- t0 \in T1*T2
----------------------- (T_Fst)
Gamma |-- t0.fst \in T1

Gamma |-- t0 \in T1*T2
----------------------- (T_Snd)
Gamma |-- t0.snd \in T2

Subtyping
Syntax:

T ::= ...
| Top top type

Subtyping:

S <: U U <: T
---------------- (S_Trans)

S <: T

------ (S_Refl)
T <: T

-------- (S_Top)
S <: Top

S1 <: T1 S2 <: T2
-------------------- (S_Prod)
S1 * S2 <: T1 * T2

T1 <: S1 S2 <: T2
-------------------- (S_Arrow)
S1 -> S2 <: T1 -> T2

S1 <: T1 S2 <: T2
-------------------- (S_Prod)
S1 * S2 <: T1 * T2

Typing:

Gamma |-- t1 \in T1 T1 <: T2
-------------------------------- (T_Sub)

Gamma |-- t1 \in T2

5

STLC + References

(Based on the STLC with Unit.)
Syntax:

T ::= ...
| Ref T Ref type

t ::= ...
| ref t allocation
| !t dereference
| t := t assignment
| l location

v ::= ...
| l location

Substitution:

[x:=s](ref t) = ref ([x:=s]t)
[x:=s](!t) = ! ([x:=s]t)
[x:=s](t1 := t2) = ([x:=s]t1) := ([x:=s]t2)
[x:=s]l = l

Small-step operational semantics:

value v2
------------------------------------- (ST_AppAbs)
(\x:T2.t1) v2 / st --> [x:=v2]t1 / st

t1 / st --> t1' / st'
--------------------------- (ST_App1)
t1 t2 / st --> t1' t2 / st'

value v1 t2 / st --> t2' / st'
---------------------------------- (ST_App2)

v1 t2 / st --> v1 t2' / st'

t1 / st --> t1' / st'
--------------------- (ST_Deref)
!t1 / st --> !t1' / st'

l < |st|
---------------------------------- (ST_DerefLoc)
!(loc l) / st --> lookup l st / st

t1 / st --> t1' / st'
---------------------------------- (ST_Assign1)
t1 := t2 / st --> t1' := t2 / st'

t2 / st --> t2' / st'
--------------------------------- (ST_Assign2)
v1 := t2 / st --> v1 := t2' / st'

l < |st|

6

----------------------------------- (ST_Assign)
loc l := v / st --> unit / [l:=v]st

t1 / st --> t1' / st'
--------------------------- (ST_Ref)
ref t1 / st --> ref t1' / st'

-------------------------------- (ST_RefValue)
ref v / st --> loc |st| / st,v

Typing:
l < |ST|

-------------------------------------- (T_Loc)
Gamma; ST |-- loc l : Ref (lookup l ST)

Gamma; ST |-- t1 : T1
---------------------------- (T_Ref)
Gamma; ST |-- ref t1 : Ref T1

Gamma; ST |-- t1 : Ref T1
------------------------- (T_Deref)

Gamma; ST |-- !t1 : T1

Gamma; ST |-- t1 : Ref T2
Gamma; ST |-- t2 : T2

----------------------------- (T_Assign)
Gamma; ST |-- t1 := t2 : Unit

7

Properties
Definition deterministic {X : Type} (R : relation X) :=

forall x y1 y2 : X, R x y1 -> R x y2 -> y1 = y2.

Theorem step_deterministic:
deterministic step.

Theorem progress : forall t T,
empty |-- t \in T ->
value t \/ exists t', t --> t'.

Theorem preservation : forall t t' T,
empty |-- t \in T ->
t --> t' ->
empty |-- t' \in T.

8

