CIS 5000: Software Foundations Midterm I

October 5, 2023

Solutions

1	(12 points)							
Put a	an X in the True or	False box for each statement, as appropriate.						
(a)	Any goal state wit ☐ True	th True as one of the assumptions above the line is provable. \boxtimes False						
(b)	This proposition is	s provable in Coq with no axioms:						
forall (P : Prop), ~(P /\ ~P)								
	⊠ True	\Box False						
(c)	This proposition is	s provable in Coq with no axioms:						
	forall (P	: Prop), (P \/ ~P)						
	\Box True							
(d)	Given any goal sta	ate where rewrite H can be used successfully, apply H will also succeed.						
	\Box True	□ False						
(e)	If the current goal goal has the form							
	H: False							
	 False							
		inate tactic will complete the proof of this goal.						
	☐ True	False Salse						
(c)	TC 1							
(1)	_	state has the form						
	m, n: nat H: m = n							
	S m = S n							
	-	lowed by reflexivity will leave no subgoals.						
	□ True	□ False						
(g)	Coq's termination recursive construction	checker requires that any Inductive type must have at least one non tor.						
	\Box True							
(h)	There are no empt that has type A.	y types in Coq. In other words, for any type A, there is some Coq expression						
	□ True							

(i)	There is no Coq expression that has type False in an empty context.									
	$oxed{oxed}$ True $oxed{\Box}$ False									
(j)	In Coq, the propositions \mbox{True} and $\mbox{`False}$ are logically equivalent—i.e., we can prove $\mbox{True} <-> \mbox{`False}.$									
	$oxed{egin{array}{cccc} oxed{\square}} & { m True} & oxed{\square} & { m False} \end{array}$									
(k)	k) For every property of numbers P : nat -> Prop, we can construct a boolean function testP : nat -> bool such that testP reflects P.									
	\square True \boxtimes False									
(l)	The proof object corresponding to an implication $P \to Q$ is a function that uses a proof of the proposition P to build a proof of the proposition Q .									
	$oxed{oxed}$ True $oxed{\Box}$ False									

[Standard Track Only] (18 points)

What is the type of each of the following Coq expressions? Check one of the listed possibilities. (Check "none of the above" if the expression is typeable but none of the given choices is its type. Check "ill-typed" if the expression does not have a type.)

(a) 1 + 1 = 3□ eq \square False \square false ⊠ Prop \square nat -> nat -> Prop □ ill-typed \square none of the above (b) fun (x : nat) \Rightarrow x \/ S x □ Prop □ nat -> Prop □ True \square False \square forall (n : nat), false \square forall (n : nat), False ⊠ ill-typed \square none of the above (c) (False, True) ☐ Prop ⊠ Prop * Prop ☐ (Prop, Prop) \square False \square false □ X * Y □ ill-typed

 \square none of the above

(d)	ReflectT (0 < 1)
	□ Prop
	□ bool -> Prop
	☐ Prop → Prop
	\square reflect (0 < 1)
	\square reflect (0 < 1) true
	\boxtimes 0 < 1 -> reflect (0 < 1) true
	\square ill-typed
	\square none of the above
(e)	Union EmptySet
	\square reg_exp string
	□ reg_exp string -> reg_exp string
	\square reg_exp
	□ reg_exp -> reg_exp
	\square string
	\square ill-typed
	\square none of the above
	(The fact that type inference is involved made this question unexpectedly tricky. The were actually three arguably correct answers: b, d, and g. The best answer (in our opinion) was b, because the expression actually does have this type. But g is defensible because what coquil actually print when asked the type of this term is "reg_exp ?T -> reg_exp ?T". And d is defensible because one might imagine that the "string" argument to the reg_exp type is inferred rather than explicit.)
(f)	leb
	\square nat
	\square nat -> nat
	⊠ nat -> nat -> bool
	□ bool
	\square nat -> bool
	\square nat -> nat -> Prop
	\square ill-typed

\square none of the above						
g) forall (x : nat), leb x x						
\square nat						
\square nat -> nat						
\square nat -> nat -> bool						
□ bool						
□ nat -> bool						
\square nat -> nat -> Prop						
\boxtimes ill-typed						
\Box none of the above						
(h) fun n => forall m, eqb m n = true						
\square nat						
□ nat -> bool						
□ nat -> nat -> bool						
☐ Prop						
⊠ nat -> Prop						
\square nat -> nat -> Prop						
\square ill-typed						
\square none of the above						

[3] (18 points) For each of the types below, write a Coq expression that has that type, or else write "uninhabited" if there are no such expressions.

(a) [1;2] = App (Char 1) (Union (Char 2) (Char 3))

Answer: Example: MApp [1] (Char 1) [2] (Union (Char 2) (Char 3)) (MChar 1) (MUnionL [2] (Char 2) (Char 3) (MChar 2))

This one was unintentionally difficult: much partial credit was given.

(b) [1;2] = Star (Char 1)

Answer: uninhabited

(c) forall (X : Type), (X -> X) -> X

Answer: uninhabited

(d) forall X Y, X -> (X -> Y) -> Y

Answer: fun X Y (x:X) (f:X->Y) => f x

(e) 4 <= 3

Answer: uninhabited

(f) (4 <= 3) -> (4 <= 4)

 $Answer:\ le_S \not 4 \not 3$

4 In this problem, we will work with two different implementations of the find function, which has this type:

```
list nat -> (nat -> bool) -> option nat
```

Invoking find 1 f should return the first element in the list 1 that satisfies the predicate f (wrapped in Some), or else None if there aren't any elements that satisfy f. For example:

```
find [1; 4; 5] even = Some 4.
find [1; 2; 4] (fun _ => true) = Some 1.
find [1; 3] even = None.
find [] (fun _ => true) = None.
```

(a) (5 points) First, let's implement find as a simple recursive function (without calling any other functions in its body). Fill in the skeleton below.

```
Fixpoint find (l : list nat) (f : nat -> bool) : option nat :=
Answer:
    match l with
    | [ ] => None
    | (h :: t) => if f h then Some h else find t f
    end.
```

(b) (7 points)

Recall the definition of fold:

```
Fixpoint fold {X Y: Type} (f : X->Y->Y) (1 : list X) (b : Y) : Y :=
  match l with
  | nil => b
  | h :: t => f h (fold f t b)
  end.
```

We can implement find using fold as something like this:

Mark each of the following potential replacements for myfunction above correct or incorrect. If incorrect, provide a list 1 such that find 1 even would return the wrong answer if this replacement were used.

- This problem asks you to translate informal mathematical ideas expressed in English into formal ones in Coq.
 - (a) (4 points) A *composite* number is one that can be formed by multiplying two numbers that are each strictly greater than one.

For example, 4 is composite $(4 = 2 \times 2)$, but 3 is not.

```
Definition composite (n : nat) : Prop :=

Answer:

exists p q,

p > 1 /\ p * q = n.
```

(b) (4 points) A prefix of a list is a sub-list that occurs at the beginning of a larger list. For example, these are all the prefixes of [1;2;3] (i.e., all the lists s such that prefix s [1;2;3]):

```
[]
[1]
[1;2]
[1;2;3]
```

Complete the following inductive definition so that prefix s 1 is provable exactly when s is a prefix of 1.

(c) (5 points) Given lists 11 and 12 and item x, we say that inserted x 11 12 when 12 is just the list 11 with one occurrence of the element x inserted somewhere inside it.

For example:

```
inserted 42 [1;2;3] [42;1;2;3] inserted 42 [1;2;3] [1;2;42;3] inserted 1 [1;2;3] [1;2;3;1] inserted 1 [1;2;3] [1;1;2;3]
```

Complete the following inductive definition. (It should have two cases: one for when x appears at the front of 12 and one for when x is inserted somewhere in the tail.) Later:

```
Inductive inserted {X : Type} : X -> list X -> list X -> Prop :=
| here : forall (x : X) (11 12 : list X),
    inserted x 11 (x :: 12)
| later : forall (x : X) (t1 t2 : list X) (h : X),
    inserted x t1 t2 ->
    inserted x (h::t1) (h::t2).
```

(d) (5 points) A list 11 is a *permutation* of another list 12 if 11 and 12 have the same elements (with each element occurring the same number of times), possibly in different orders.

For example, the following lists (among others) are permutations of [1;1;2;3]:

```
[1;1;2;3]
[2;1;3;1]
[3;2;1;1]
[1;3;2;1]
```

On the other hand, [1;2;3] is not a permutation of [1;1;2;3].

Here is one way to define the concept of permutation precisely:

- The empty list is a permutation of itself.
- If two lists are permutations of each other, then inserting the same element at an arbitrary position in each list yields longer lists that are again permutations.

Use the inserted relation from part (c) to formalize this definition as an inductive relation.

```
Inductive perm {X : Type} : list X -> list X -> Prop :=
| empty : perm [] []
| more : forall x l1 l2 l1' l2',
    perm l1 l2 ->
    inserted x l1 l1' ->
    inserted x l2 l2' ->
    perm l1' l2'.
```

`		, ,		ds induction" if it is ion and without additional	-	vable only using induction, or "easy" if al lemmas.
(a) In	ı 3 [:	1;2;3]				
,		not provable		needs induction	\boxtimes	easy
(b) fo	rall	x, In x [1;2;3]]			
		not provable		needs induction		easy
(c) fo	rall	s, In 3 ([1;2;	3] +	++ s)		
		not provable		needs induction		easy
(d) fo	rall	s, In 3 (s ++	[1;2	2;3])		
		not provable	\boxtimes	needs induction		easy
(e) ex	ists	s, In 3 (s ++	[1;2	2;3])		
		not provable		needs induction		easy
(f) fo	rall	x, In x [1;2;3]] ->	In x [3;2;1]		
		not provable		needs induction		easy
(g) fo	rall	x s, In x s ->	In	x ([1;2;3] ++ s)		
		not provable		needs induction		easy
(h) ex	ists	(x y : list na	t),	x ++ y = y ++ x		
		not provable		needs induction		easy
(i) fo	rall	n, pred n <= n				
		not provable		needs induction		easy
(j) fo	rall	x y z, x + (y		-		
		not provable	\boxtimes	needs induction		easy
(k) f c	rall	P : Prop, (P /	\ ~F			
		not provable		needs induction	\boxtimes	easy
(l) fo		P : Prop, P \/				
	\boxtimes	not provable		needs induction		easy

[6] (12 points) For each of the following propositions, check "**not provable**" if it is not provable

7 [Advanced Track Only] (18 points)

Suppose we define a lexicographic ordering relation on lists of numbers as follows:

Fill in the missing parts in the following informal proof that this ordering is transitive.

```
Theorem listlt_trans : forall x y z,
    listlt x y -> listlt y z -> listlt x z.
```

Proof: By induction on the first of the two given derivations. Specifically, we prove, by induction on a derivation of listlt x y that, for all z and for any derivation of listlt y z, we have listlt x z.

Case 1: Suppose the first derivation ends with listlt_empty.

(Complete this case of the proof)

In this case, the list x is empty. Then listlt x z follows immediately by listlt_empty.

Case 2: Suppose the first derivation ends with listlt_head, with

```
x = h1 :: t2

y = h2 :: y2

h1 < h2.
```

listlt [1;1] [1;2;3]

(The rest of this case is omitted; leave it blank.)

Case 3: Suppose the first derivation ends with listlt_tail, with

x = h :: t1
y = h :: t2
listlt t1 t2,

and suppose we are given the following induction hypothesis:

(Fill in the IH...) for any z and any derivation of listlt t2 z, we have listlt t1 z.

(Complete this case of the proof...) Again, consider the possible forms of the second derivation.

Subcase 3a: Suppose the first derivation ends with listlt_empty. Again, this cannot happen (y cannot be both [] and h2::t2).

Subcase 3b: Suppose the first derivation ends with listlt_head, with

z = h :: t3h < h3.

Then listlt x z is immediate by listlt_tail.

Subcase 3c: Suppose the first derivation ends with listlt_tail, with

z = h :: t3.

By the IH, we have listlt t1 t3, from which it follows that listlt x z, by listlt_tail.

For Reference

```
Definition pred (n : nat) : nat :=
  match n with
  | 0 => 0
  | S n' => n'
  end.
Fixpoint leb (n m : nat) : bool :=
  match n with
  | 0 => true
  | S n' =>
     match m with
      | 0 => false
      | S m' => leb n' m'
      end
  end.
Inductive le : nat -> nat -> Prop :=
  | le_n (n : nat)
                                 : le n n
  | le_S (n m : nat) (H : le n m) : le n (S m).
Notation "n \le m" := (le n m).
Definition lt (n m : nat) := le (S n) m.
Notation "n < m" := (lt n m).
Inductive option (X:Type) : Type :=
  | Some (x : X)
  | None.
Inductive list (X:Type) : Type :=
  | cons (x : X) (1 : list X).
Fixpoint In {A : Type} (x : A) (1 : list A) : Prop :=
  match 1 with
  | [] => False
  | x' :: 1' => x' = x \/ In x 1'
  end.
Inductive reflect (P : Prop) : bool -> Prop :=
  | ReflectT (H : P) : reflect P true
  | ReflectF (H : ~ P) : reflect P false.
```

```
Inductive True : Prop :=
   | I : True.
 Inductive False : Prop := .
Inductive reg_exp (T : Type) : Type :=
 | EmptySet
 | EmptyStr
 | Char (t : T)
 | App (r1 r2 : reg_exp T)
  | Union (r1 r2 : reg_exp T)
  | Star (r : reg_exp T).
Arguments EmptySet {T}.
Arguments EmptyStr {T}.
Arguments Char {T} _.
Arguments App {T} _ _.
Arguments Union {T} _ _.
Arguments Star {T} _.
Inductive exp_match {T} : list T -> reg_exp T -> Prop :=
  | MEmpty : [] =~ EmptyStr
  | MChar x : [x] = (Char x)
 | MApp s1 re1 s2 re2
             (H1 : s1 = re1)
             (H2 : s2 = re2)
           : (s1 ++ s2) =~ (App re1 re2)
  | MUnionL s1 re1 re2
                (H1 : s1 = re1)
              : s1 = "(Union re1 re2)
  | MUnionR re1 s2 re2
                (H2 : s2 = re2)
             : s2 = "(Union re1 re2)
  | MStarO re : [] =~ (Star re)
  | MStarApp s1 s2 re
                 (H1 : s1 = re)
                 (H2 : s2 = (Star re))
               : (s1 ++ s2) =~ (Star re)
 where "s = \sim re" := (exp_match s re).
```