
CIS 5000: Software Foundations Midterm I

October 5, 2023

Name (printed):

Username (PennKey login id):

Choose a random 4-digit number:

My signature below certifies that I have complied with the University of Pennsylvania’s Code of
Academic Integrity in completing this examination.

Signature: Date:

Directions:

• This exam contains both standard and advanced-track questions. Questions with no
annotation are for both tracks. Questions for just one of the tracks are marked “Standard
Track Only” or “Advanced Track Only.”

Do not waste time or confuse the graders by answering questions intended for the other
track.

• Before beginning the exam, please write your random 4-digit number (not your name
or PennKey!) at the top of each even-numbered page, so that we can find things if a
staple fails.

Mark the box of the track you are following.

Standard Advanced



1 (12 points)

Put an X in the True or False box for each statement, as appropriate.

(a) Any goal state with True as one of the assumptions above the line is provable.

□ True □ False

(b) This proposition is provable in Coq with no axioms:

forall (P : Prop), ~(P /\ ~P)

□ True □ False

(c) This proposition is provable in Coq with no axioms:

forall (P : Prop), (P \/ ~P)

□ True □ False

(d) Given any goal state where rewrite H can be used successfully, apply H will also succeed.

□ True □ False

(e) If the current goal goal has the form

H: False
--------
False

then the discriminate tactic will complete the proof of this goal.

□ True □ False

(f) If the current goal state has the form

m, n: nat
H: m = n
--------------------
S m = S n

the injection followed by reflexivity will leave no subgoals.

□ True □ False

(g) Coq’s termination checker requires that any Inductive type must have at least one non-
recursive constructor.

□ True □ False

(h) There are no empty types in Coq. In other words, for any type A, there is some Coq expression
that has type A.

□ True □ False

1



(i) There is no Coq expression that has type False in an empty context.

□ True □ False

(j) In Coq, the propositions True and ~False are logically equivalent—i.e., we can prove
True <-> ~False.

□ True □ False

(k) For every property of numbers P : nat -> Prop, we can construct a boolean function
testP : nat -> bool such that testP reflects P.

□ True □ False

(l) The proof object corresponding to an implication P -> Q is a function that uses a proof of
the proposition P to build a proof of the proposition Q.

□ True □ False

2



2 [Standard Track Only] (18 points)

What is the type of each of the following Coq expressions? Check one of the listed possibilities.
(Check “none of the above” if the expression is typeable but none of the given choices is its type.
Check “ill-typed” if the expression does not have a type.)

(a) 1 + 1 = 3

□ eq

□ False

□ false

□ Prop

□ nat -> nat -> Prop

□ ill-typed

□ none of the above

(b) fun (x : nat) => x \/ S x

□ Prop

□ nat -> Prop

□ True

□ False

□ forall (n : nat), false

□ forall (n : nat), False

□ ill-typed

□ none of the above

(c) (False, True)

□ Prop

□ Prop * Prop

□ (Prop, Prop)

□ False

□ false

□ X * Y

□ ill-typed

□ none of the above

3



(d) ReflectT (0 < 1)

□ Prop

□ bool -> Prop

□ Prop -> Prop

□ reflect (0 < 1)

□ reflect (0 < 1) true

□ 0 < 1 -> reflect (0 < 1) true

□ ill-typed

□ none of the above

(e) Union EmptySet

□ reg_exp string

□ reg_exp string -> reg_exp string

□ reg_exp

□ reg_exp -> reg_exp

□ string

□ ill-typed

□ none of the above

(f) leb

□ nat

□ nat -> nat

□ nat -> nat -> bool

□ bool

□ nat -> bool

□ nat -> nat -> Prop

□ ill-typed

□ none of the above

4



(g) forall (x : nat), leb x x

□ nat

□ nat -> nat

□ nat -> nat -> bool

□ bool

□ nat -> bool

□ nat -> nat -> Prop

□ ill-typed

□ none of the above

(h) fun n => forall m, eqb m n = true

□ nat

□ nat -> bool

□ nat -> nat -> bool

□ Prop

□ nat -> Prop

□ nat -> nat -> Prop

□ ill-typed

□ none of the above

5



3 (18 points) For each of the types below, write a Coq expression that has that type, or else
write “uninhabited” if there are no such expressions.

(a) [1;2] =~ App (Char 1) (Union (Char 2) (Char 3))

(b) [1;2] =~ Star (Char 1)

(c) forall (X : Type), (X -> X) -> X

(d) forall X Y, X -> (X -> Y) -> Y

(e) 4 <= 3

(f) (4 <= 3) -> (4 <= 4)

6



4 In this problem, we will work with two different implementations of the find function, which
has this type:

list nat -> (nat -> bool) -> option nat

Invoking find l f should return the first element in the list l that satisfies the predicate f (wrapped
in Some), or else None if there aren’t any elements that satisfy f. For example:

find [1; 4; 5] even = Some 4.

find [1; 2; 4] (fun _ => true) = Some 1.

find [1; 3] even = None.

find [] (fun _ => true) = None.

(a) (5 points) First, let’s implement find as a simple recursive function (without calling any
other functions in its body). Fill in the skeleton below.

Fixpoint find (l : list nat) (f : nat -> bool) : option nat :=

7



(b) (7 points)

Recall the definition of fold:

Fixpoint fold {X Y: Type} (f : X->Y->Y) (l : list X) (b : Y) : Y :=
match l with
| nil => b
| h :: t => f h (fold f t b)
end.

We can implement find using fold as something like this:

Definition find (l : list nat) (f : nat -> bool) : option nat :=
fold myfunction l None.

Mark each of the following potential replacements for myfunction above correct or incorrect.
If incorrect, provide a list l such that find l even would return the wrong answer if this
replacement were used.

myfunction =

(fun h acc => Some h)

□ Correct.

□ Incorrect. Counterexample: l =

myfunction =

(fun h acc => if f h then Some h else None)

□ Correct.

□ Incorrect. Counterexample: l =

myfunction =

(fun h acc => if f h then Some h else acc)

□ Correct.

□ Incorrect. Counterexample: l =

8



5 This problem asks you to translate informal mathematical ideas expressed in English into
formal ones in Coq.

(a) (4 points) A composite number is one that can be formed by multiplying two numbers that
are each strictly greater than one.

For example, 4 is composite (4 = 2× 2), but 3 is not.

Definition composite (n : nat) : Prop :=

(b) (4 points) A prefix of a list is a sub-list that occurs at the beginning of a larger list. For
example, these are all the prefixes of [1;2;3] (i.e., all the lists s such that prefix s [1;2;3]):

[]
[1]
[1;2]
[1;2;3]

Complete the following inductive definition so that prefix s l is provable exactly when s is
a prefix of l.

Inductive prefix {X : Type} : list X -> list X -> Prop :=

9



(c) (5 points) Given lists l1 and l2 and item x, we say that inserted x l1 l2 when l2 is just
the list l1 with one occurrence of the element x inserted somewhere inside it.

For example:

inserted 42 [1;2;3] [42;1;2;3]
inserted 42 [1;2;3] [1;2;42;3]
inserted 1 [1;2;3] [1;2;3;1]
inserted 1 [1;2;3] [1;1;2;3]

Complete the following inductive definition. (It should have two cases: one for when x appears
at the front of l2 and one for when x is inserted somewhere in the tail.) Later:

Inductive inserted {X : Type} : X -> list X -> list X -> Prop :=

10



(d) (5 points) A list l1 is a permutation of another list l2 if l1 and l2 have the same elements
(with each element occurring the same number of times), possibly in different orders.

For example, the following lists (among others) are permutations of [1;1;2;3]:

[1;1;2;3]
[2;1;3;1]
[3;2;1;1]
[1;3;2;1]

On the other hand, [1;2;3] is not a permutation of [1;1;2;3].

Here is one way to define the concept of permutation precisely:

• The empty list is a permutation of itself.

• If two lists are permutations of each other, then inserting the same element at an arbitrary
position in each list yields longer lists that are again permutations.

Use the inserted relation from part (c) to formalize this definition as an inductive relation.

Inductive perm {X : Type} : list X -> list X -> Prop :=

11



6 (12 points) For each of the following propositions, check “not provable” if it is not provable
(without additional axioms), “needs induction” if it is provable only using induction, or “easy” if
it is provable without using induction and without additional lemmas.

(a) In 3 [1;2;3]

□ not provable □ needs induction □ easy

(b) forall x, In x [1;2;3]

□ not provable □ needs induction □ easy

(c) forall s, In 3 ([1;2;3] ++ s)

□ not provable □ needs induction □ easy

(d) forall s, In 3 (s ++ [1;2;3])

□ not provable □ needs induction □ easy

(e) exists s, In 3 (s ++ [1;2;3])

□ not provable □ needs induction □ easy

(f) forall x, In x [1;2;3] -> In x [3;2;1]

□ not provable □ needs induction □ easy

(g) forall x s, In x s -> In x ([1;2;3] ++ s)

□ not provable □ needs induction □ easy

(h) exists (x y : list nat), x ++ y = y ++ x

□ not provable □ needs induction □ easy

(i) forall n, pred n <= n

□ not provable □ needs induction □ easy

(j) forall x y z, x + (y + z) = (x + y) + z

□ not provable □ needs induction □ easy

(k) forall P : Prop, (P /\ ~P) -> True

□ not provable □ needs induction □ easy

(l) forall P : Prop, P \/ P

□ not provable □ needs induction □ easy

12



7 [Advanced Track Only] (18 points)

Suppose we define a lexicographic ordering relation on lists of numbers as follows:

Inductive listlt : list nat -> list nat -> Prop :=
| listlt_empty : forall x2,

listlt [] x2
| listlt_head : forall h1 h2 t1 t2,

h1 < h2 -> listlt (h1::t1) (h2::t2)
| listlt_tail : forall h t1 t2,

listlt t1 t2 ->
listlt (h::t1) (h::t2).

For example:

listlt [1] [2;3]
listlt [1] [1;2;3]
listlt [1;1] [1;2;3]

Fill in the missing parts in the following informal proof that this ordering is transitive.

Theorem listlt_trans : forall x y z,
listlt x y -> listlt y z -> listlt x z.

Proof: By induction on the first of the two given derivations. Specifically, we prove, by induction on
a derivation of listlt x y that, for all z and for any derivation of listlt y z, we have listlt x z.

Case 1: Suppose the first derivation ends with listlt_empty.

(Complete this case of the proof)

13



Case 2: Suppose the first derivation ends with listlt_head, with

x = h1 :: t2
y = h2 :: y2
h1 < h2.

(The rest of this case is omitted; leave it blank.)

Case 3: Suppose the first derivation ends with listlt_tail, with

x = h :: t1
y = h :: t2
listlt t1 t2,

and suppose we are given the following induction hypothesis:

(Fill in the IH...)

(Complete this case of the proof...)

14



For Reference

Definition pred (n : nat) : nat :=
match n with
| O => O
| S n’ => n’
end.

Fixpoint leb (n m : nat) : bool :=
match n with
| O => true
| S n’ =>

match m with
| O => false
| S m’ => leb n’ m’
end

end.

Inductive le : nat -> nat -> Prop :=
| le_n (n : nat) : le n n
| le_S (n m : nat) (H : le n m) : le n (S m).

Notation "n <= m" := (le n m).

Definition lt (n m : nat) := le (S n) m.
Notation "n < m" := (lt n m).

Inductive option (X:Type) : Type :=
| Some (x : X)
| None.

Inductive list (X:Type) : Type :=
| nil
| cons (x : X) (l : list X).

Fixpoint In {A : Type} (x : A) (l : list A) : Prop :=
match l with
| [] => False
| x’ :: l’ => x’ = x \/ In x l’
end.

Inductive reflect (P : Prop) : bool -> Prop :=
| ReflectT (H : P) : reflect P true
| ReflectF (H : ~ P) : reflect P false.

1



Inductive True : Prop :=
| I : True.

Inductive False : Prop := .

Inductive reg_exp (T : Type) : Type :=
| EmptySet
| EmptyStr
| Char (t : T)
| App (r1 r2 : reg_exp T)
| Union (r1 r2 : reg_exp T)
| Star (r : reg_exp T).

Arguments EmptySet {T}.
Arguments EmptyStr {T}.
Arguments Char {T} _.
Arguments App {T} _ _.
Arguments Union {T} _ _.
Arguments Star {T} _.

Inductive exp_match {T} : list T -> reg_exp T -> Prop :=
| MEmpty : [] =~ EmptyStr
| MChar x : [x] =~ (Char x)
| MApp s1 re1 s2 re2

(H1 : s1 =~ re1)
(H2 : s2 =~ re2)

: (s1 ++ s2) =~ (App re1 re2)
| MUnionL s1 re1 re2

(H1 : s1 =~ re1)
: s1 =~ (Union re1 re2)

| MUnionR re1 s2 re2
(H2 : s2 =~ re2)

: s2 =~ (Union re1 re2)
| MStar0 re : [] =~ (Star re)
| MStarApp s1 s2 re

(H1 : s1 =~ re)
(H2 : s2 =~ (Star re))

: (s1 ++ s2) =~ (Star re)

where "s =~ re" := (exp_match s re).

2


